01.12.2023 TOPOLOGICAL VECTOR SPACES Exercise sheet 9

Topological tensor products
(EXERCISES FOR LECTURES 10-12)

9.1. Let X, Y, Z be topological vector spaces. Show that a bilinear map X x Y — Z is continuous
iff it is continuous at (0, 0).

9.2. Let X, Y, Z be locally convex spaces, and let P, ), R be defining families of seminorms on
X, Y, Z, resp. Suppose that P and () are directed. Show that a bilinear map ¢: X x Y — Z is
continuous iff for every r € R there exist p € P, ¢ € (), and C' > 0 such that r(®(z,y)) < Cp(x)q(y)
forallz € X, yeY.

9.3. Let X, Y, Z be seminormed spaces. Show that Z(X, Z) and Z® (X x Y, Z) are normed spaces
iff Z is a normed space.

9.4. Let X and Y be seminormed spaces. Show that the open unit ball of X ®,Y is the convex
hull of the set Ux @ Uy = {x ®y : 2z € Ux, y € Uy}, where Ux and Uy are the open unit balls of
X and Y, respectively. As a corollary, the projective tensor seminorm on X ® Y is the Minkowski
functional of conv(Ux ® Uy ).

9.5. Let X and Y be seminormed spaces. Show that a seminorm « on X ®Y is a reasonable
cross-seminorm iff || - [ <a < || - |-

9.6. Let X and Y be locally convex spaces. Show that

(a) the topology on X ®, Y is the strongest locally convex topology on X ® Y making the canonical
map X XY - X QY (z,y) — = ® y, continuous;

(b) if % and ¥ are neighborhood bases at 0 in X and Y, respectively, then {conv(U ©@ V) : U €
%,V € ¥} is aneighborhood base at 0 in X ®, Y.

9.7. Let X and Y be infinite-dimensional normed spaces. Prove that the normed spaces X ®, Y and
X ®.Y are incomplete.

9.8. Formulate and prove (a) the commutativity and (b) the associativity of the tensor products
Ry Rey R, Re, and  (c)  their additivity in each variable.

9.9. Given seminormed spaces X, Y, Z, construct natural isometric isomorphisms £ (X ®, Y, Z) =
ZL(X,2(Y,7)) and (assuming that Z is a Banach space) (X ®,Y,7) = Z(X, L (Y, 2)).

9.10. Given locally convex spaces X, Y, Z, construct a natural linear injection £ (X ®,Y,7Z) —
ZL(X, %4(Y,Z)). Give an example showing that this map is not necessarily surjective. (Hint: take
any infinite-dimensional normed space X, let Z = K, and try to guess what Y is.)

9.11. Let X be a locally convex space, and {Y; : i € I} be a family of locally convex spaces.
(a) Is the natural vector space isomorphism X ®(6D,., Y:) = @, ,(X ®,Y;) always a topological
isomorphism?  (b) The same question for ®k.

i€l

9.12. Given a normed space X, consider the normed spaces X7 = (X", ||-|l1) and X2 = (X", || *||),
where ||z]jy = > ||;]| and [|z||cc = max ||z;|| for z = (z4,...,2,) € X™.

(a) Construct isometric isomorphisms K} ®, X = X" and K2 ®. X = XZ.

(b) Identify K ® K% with the space M, (K) of n x n-matrices via the isomorphism = ®@ y — (z;y;).
Given a = (a;;) € M, (K), calculate ||la||, and ||a||. explicitly in terms of the matrix elements a;;, and
deduce that || - || # || - ||c unless n = 1.
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9.13. Given a set I and a Banach space X, construct an isometric isomorphism ¢(7) R X
I, X), where

NI, X) = {x = (@) e X" : ol = 3 il < oo}.

9.14. Let I, J be sets, and let P, () be Kothe sets on I and J, respectively. Define a Kothe set
P®Qon I xJ by letting PO Q = {(pig;) : p € P, ¢ € Q}. Construct a topological isomorphism
M, P) R, ML, Q) 2N (I x J,POQ).

9.15. Construct topological isomorphisms
(a) S(Z") @y s(Z™) = s(Z"™)  (see Exercise 8.6 for the definition of s(Z"));
(b) C(T™) & C(T") = C(T™),  f@gw ((z,y) = f(2)g(y))-

(Hint to (b): use (a) and the Fourier transform.)

9.16. Construct a topological isomorphism (D) ®, O(D%) = ﬁ(]D)Ergg)), f®g — ((x,y) >
f(z)g(y)). (Hint: use Exercises 9.14 and 8.7.)

9.17. (a) Given a set I and a Banach space X, construct an isometric isomorphism ¢y ([) R X
co(1, X), where

co(l, X) = {:c = (z;) € XT: lim ||z;]| = o} with the norm ||z]|e = sup |J;])-
1—00 %

(b) Construct an isometric isomorphism co(I) ®. co(J) =2 ¢o(I x J), where co(I) = ¢o(I, K).

9.18. Prove that the canonical map ¢! ®, ¢y — ' ®. ¢y is neither topologically injective nor surjec-
tive.

9.19. Let X and Y be locally compact topological spaces. Construct a topological isomorphism
CX)R.C(Y)2C(X xY), fog— ((z,y) = f(z)g(y)). (Hint: see the lectures.)

9.20. Construct a topological isomorphism C®(R™) ®, C®(R") & C®(R™"),  f®g ((x, y) —
f(x)g(y)). (Hint: use the isomorphism C(X)®.C(Y) = C(X x Y) for compact spaces X, Y.)

9.21. Construct a topological isomorphism .7 (R™) ®. .7 (R") = Z(R™"),  feg— ((v,y) —
f(x)g(y)). (Hint: see the hint to the previous exercise. )

Given a Kothe set P on a set I, let \°(1, P) = {x = (x;) € K : (2;p;) € co(I) Vp € P}.

9.22. (a) Prove that \°(, P) is a closed vector subspace of A>°(I, P). Hence \°(I, P) as a complete
locally convex space.

(b) Given Kothe sets P on I and @ on J, construct a topological isomorphism A°(I, P) ®. \°(.J, Q) =
N(I x J,P®Q) (cf. Exercise 9.14).

9.23. Prove directly (that is, without referring to the nuclearity of the spaces involved) that the
canonical maps C(T™) @, C®(T") — C®(T™) ®. C=(T") and 0(D}) @, O (D) — O(DE) ®. O(DY)
are topological isomorphisms. (Hint: use Exercises 9.14 and 9.22 (b).)

Announcement. At Lecture 16, we will generalize the results of Exercises 9.15 (b), 9.16, 9.20, and
9.23 to the spaces of smooth (resp. holomorphic) functions on smooth real (resp. complex analytic)
manifolds.



