

Completeness

(EXERCISES FOR LECTURES 8–9)

7.1. Let X be a topological space, $Y \subset X$, and $x \in X$. Show that $x \in \overline{Y}$ iff there is a net in Y which converges to x .

7.2. Let X and Y be topological spaces. Show that a map $f: X \rightarrow Y$ is continuous at $x \in X$ iff for every net (x_λ) in X such that $x_\lambda \rightarrow x$ we have $f(x_\lambda) \rightarrow f(x)$ in Y .

7.3. Show that a topological space X is Hausdorff iff every net in X has at most one limit.

7.4. Show that a topological space X is compact iff every net in X has an accumulation point.

7.5. Let X be a topological vector space. Prove that

- (a) each convergent net in X is a Cauchy net;
- (b) each Cauchy net in X which has an accumulation point $x \in X$ converges to x .

7.6. Show that a continuous linear map between topological vector spaces takes Cauchy nets to Cauchy nets.

7.7. Let $(X, \tau(P))$ be a locally convex space. Show that a net (x_λ) in X

- (a) converges to $x \in X$ iff $p(x_\lambda - x) \rightarrow 0$ for every $p \in P$;
- (b) is a Cauchy net iff for each $p \in P$ and each $\varepsilon > 0$ there exists $\lambda_0 \in \Lambda$ such that we have $p(x_\lambda - x_\mu) < \varepsilon$ whenever $\lambda, \mu \geq \lambda_0$.

7.8. Let X be a vector space equipped with the projective locally convex topology generated by a family $\{\varphi_i: X \rightarrow X_i : i \in I\}$ of linear maps, where $\{X_i : i \in I\}$ is a family of locally convex spaces. Show that a net (x_λ) in X converges to $x \in X$ iff we have $\varphi_i(x_\lambda) \rightarrow \varphi_i(x)$ for all $i \in I$.

7.9. Show that a compact subset of a Hausdorff topological vector space is complete.

7.10. Let X be a topological vector space, and let $X_0 \subset X$ be a dense vector subspace. Show that every continuous linear map from X_0 to a complete topological vector space Y uniquely extends to a continuous linear map from X to Y .

7.11. Let X be a metrizable topological vector space, and let ρ be a translation invariant metric on X that generates the topology of X . Prove that the following conditions are equivalent:

- (i) X is complete;
- (ii) X is sequentially complete;
- (iii) (X, ρ) is a complete metric space.

7.12. Let S be an uncountable set, and let X be the subspace of \mathbb{K}^S consisting of all countably supported functions. Prove that X is sequentially complete, but is not complete.

7.13. Let X be a topological vector space, and let $X_0 \subset X$ be a dense vector subspace. Show that

- (a) every continuous seminorm p on X_0 uniquely extends to a continuous seminorm \tilde{p} on X ;
- (b) if P is a defining family of seminorms on X_0 , then $\{\tilde{p} : p \in P\}$ is a defining family of seminorms on X ;
- (c) if \mathcal{U} is a base of neighborhoods of 0 in X_0 , then $\{\overline{U} : U \in \mathcal{U}\}$ is a base of neighborhoods of 0 in X .

7.14. Let $(X_i)_{i \in I}$ be a family of locally convex spaces. Show that $\prod_{i \in I} X_i$ is complete iff all the spaces X_i are complete.

7.15. Let $(X_i)_{i \in I}$ be a family of locally convex spaces. Show that $\bigoplus_{i \in I} X_i$ is complete iff all the spaces X_i are complete. As a corollary, the strongest locally convex space is complete.

7.16. Show that the projective limit of a family of locally convex spaces is a closed subspace of their product. As a corollary, the projective limit of complete locally convex spaces is complete.

7.17. Let X be a locally convex space, and let Y be a vector subspace of X . Suppose that Y is equipped with a locally convex topology that is stronger (=finer) than the topology induced from X . We say that Y is *locally closed* in X if there is a base of neighborhoods of 0 in Y consisting of sets closed in X . Show that, if X is complete and Y is locally closed in X , then Y is complete.

7.18. Prove that the following locally convex spaces are complete:

- (a) $C(T)$, where T is a locally compact topological space;
- (b) $C^\infty(U)$, where $U \subset \mathbb{R}^n$ is an open set;
- (c) the space s of rapidly decreasing sequences;
- (d) the Schwartz space $\mathcal{S}(\mathbb{R}^n)$;
- (e) $\mathcal{O}(U)$, where $U \subset \mathbb{C}$ is an open set;
- (f) $C_c(T)$, where T is a second countable locally compact topological space;
- (g) $C_c^\infty(U)$, where $U \subset \mathbb{R}^n$ is an open set.

7.19. Let X be a complete locally convex space, and let P be a directed defining family of seminorms on X . Recall (see the lecture) that there exists a topological isomorphism $X \cong \varprojlim \tilde{X}_p$, where \tilde{X}_p (for every $p \in P$) is the completion of the normed space $X_p = (X/p^{-1}(0), \hat{p})$. Describe \tilde{X}_p explicitly for (0) $X = \mathbb{K}^S$, where S is a set, and for the spaces (a) – (f) of Exercise 7.18.

7.20. Let X be a Hausdorff locally convex space. Describe explicitly the completion of the dual space X' equipped with the weak* topology.

7.21. Given a locally convex space X , let X^∞ (resp. X_∞) denote the product (resp. the locally convex direct sum) of countably many copies of X . Let now X and Y be Banach spaces such that Y is continuously embedded into X and such that Y is dense in X (for example, $X = \ell^2$ and $Y = \ell^1$). Define

$$\varphi: X_\infty \oplus Y^\infty \rightarrow X^\infty, \quad (x, y) \mapsto x + y.$$

Prove that φ is an open map onto a proper dense subspace of X^∞ . Deduce that the quotient $(X_\infty \oplus Y^\infty) / \text{Ker } \varphi$ is incomplete (while $X_\infty \oplus Y^\infty$ itself is complete).

7.22. Let T be a locally compact Hausdorff topological space, and let $S \subset T$ be a closed subset. Prove that

- (i) the restriction map $r_S: C(T) \rightarrow C(S)$ is an open map onto a dense subspace of $C(S)$;
- (ii) if T is not normal, then there exists a closed set $S \subset T$ such that r_S is not onto;
- (iii) if S is as in (ii), then the quotient $C(T) / \text{Ker } r_S$ is incomplete (while $C(T)$ itself is complete).