

## Projective and inductive limits

(EXERCISES FOR LECTURES 6–7)

**6.1.** Let  $\mathcal{X} = (X_i, \varphi_{ij})$  be a projective system of locally convex spaces indexed by a directed set  $I$ . Let

$$X = \left\{ x = (x_i) \in \prod_{i \in I} X_i : x_i = \varphi_{ij}(x_j) \forall i < j \right\}.$$

Equip  $X$  with the topology induced from  $\prod_{i \in I} X_i$ . For each  $i \in I$ , let  $\varphi_i: X \rightarrow X_i$  denote the projection onto the  $i$ th factor.

- (a) Show that  $(X, \varphi_i)$  is the (category-theoretic) projective limit of  $\mathcal{X}$  in **LCS**.
- (b) Show that  $X$  is closed in  $\prod_{i \in I} X_i$ .
- (c) Suppose that  $\beta_i$  is a base of neighborhoods of 0 in  $X_i$  ( $i \in I$ ). Show that the family  $\{\varphi_i^{-1}(U) : i \in I, U \in \beta_i\}$  is a base of neighborhoods of 0 in  $X$  (and is not just a subbase; compare with Exercise 5.1 (d)).

**6.2.** Let  $(X_i, \varphi_{ij})$  be a projective system of locally convex spaces,  $X = \varprojlim(X_i, \varphi_{ij})$ , and let  $Y$  be a vector subspace of  $X$ . For each  $i$ , let  $Y_i = \varphi_i(Y) \subset X_i$  (where  $\varphi_i: X \rightarrow X_i$  is the canonical map).

- (a) Show that  $\overline{Y} = \varprojlim(\overline{Y}_i, \varphi_{ij}|_{\overline{Y}_j})$ .
- (b) Do we always have  $Y = \varprojlim(Y_i, \varphi_{ij}|_{Y_j})$ ?

A projective system  $\mathcal{X}$  of locally convex spaces is said to be *reduced* if all the canonical maps  $\varprojlim \mathcal{X} \rightarrow X_i$  have dense ranges. A *reduced projective limit* is the projective limit of a reduced projective system.

**6.3.** Let  $X = \varprojlim(X_i, \varphi_{ij})$  be a reduced projective limit of complete locally convex spaces. Prove that  $X$  is normable if and only if the system  $(X_i, \varphi_{ij})$  “stabilizes at a normable space” in the following sense: there exists  $i_0 \in I$  such that  $X_{i_0}$  is normable, and such that for all  $j \geq i \geq i_0$  the connecting map  $\varphi_{ij}: X_j \rightarrow X_i$  is a topological isomorphism.

**6.4.** Let  $(X_i)_{i \in I}$  be a family of locally convex spaces. Construct a topological isomorphism  $\prod_{i \in I} X_i \cong \varprojlim\{\prod_{i \in J} X_i : J \subset I \text{ is a finite subset}\}$ .

**6.5.** Let  $X$  be a locally compact Hausdorff topological space.

- (a) Construct a topological isomorphism  $C(X) \cong \varprojlim\{C(K) : K \subset X \text{ is a compact set}\}$ .
- (b) Assume that  $X$  is second countable, and let  $(K_j)_{j \in \mathbb{N}}$  be a compact exhaustion of  $X$ , i.e., a sequence of compact sets such that  $X = \bigcup K_j$  and such that  $K_j \subset \text{Int } K_{j+1}$  for all  $j$ . (A subexercise: prove that a compact exhaustion exists.) Construct a topological isomorphism  $C(X) \cong \varprojlim_{j \in \mathbb{N}} C(K_j)$ .

**6.6.** Let  $U \subset \mathbb{C}$  be an open set, and let  $(K_j)_{j \in \mathbb{N}}$  be a compact exhaustion of  $U$ . For each  $j$ , let  $\mathcal{A}(K_j)$  denote the subspace of  $C(K_j)$  consisting of functions holomorphic on  $\text{Int } K_j$ . Construct a topological isomorphism  $\mathcal{O}(U) \cong \varprojlim_{j \in \mathbb{N}} \mathcal{A}(K_j)$ .

**6.7.** Let  $U \subset \mathbb{C}$  be an open set. Represent  $\mathcal{O}(U)$  as the projective limit of a sequence of Hilbert spaces.

**6.8.** Define  $\varphi: \ell^\infty \rightarrow \ell^\infty$  by  $\varphi(x_1, x_2, \dots) = (x_1, x_2/2, x_3/3, \dots)$ .

- (a) Show that the projective limit of the sequence  $\ell^\infty \xleftarrow{\varphi} \ell^\infty \xleftarrow{\varphi} \ell^\infty \xleftarrow{\varphi} \dots$  is topologically isomorphic to  $s$ , the space of rapidly decreasing sequences (see Exercise sheet 2).
- (b) Show that replacing  $\ell^\infty$  by  $\ell^p$  (where  $1 \leq p < \infty$ ) or by  $c_0$  yields the same projective limit.

**6.9.** Construct a topological isomorphism  $C^\infty(\mathbb{R}) \cong \varprojlim_{k \in \mathbb{N}} C^k[-k, k]$ .

**6.10\*.** Represent  $C^\infty(\mathbb{R})$  as the projective limit of a sequence of Hilbert spaces.

**6.11.** Represent the Schwartz space  $\mathcal{S}(\mathbb{R}^n)$  as the projective limit of a sequence of (a) Banach spaces; (b)\* Hilbert spaces.

**6.12.** Let  $\mathcal{X} = (X_i, \varphi_{ij})$  be an inductive system of locally convex spaces indexed by a directed set  $I$ . Let

$$X = \left( \bigoplus_{i \in I} X_i \right) / \text{span}\{x - \varphi_{ij}(x) : i \leq j, x \in X_i\}.$$

For each  $j \in I$ , let  $\varphi_j : X_j \rightarrow X$  denote the composite of the standard embedding  $X_j \rightarrow \bigoplus_{i \in I} X_i$  and the quotient map  $\bigoplus_{i \in I} X_i \rightarrow X$ . Show that  $(X, \varphi_i)$  is the (category-theoretic) inductive limit of  $\mathcal{X}$  in **LCS**.

**6.13. (a)** Let  $X$  be a vector space. Suppose that  $X = \bigcup_{i \in I} X_i$ , where  $(X_i)_{i \in I}$  is a family of vector subspaces of  $X$  indexed by a directed set  $I$  such that  $X_i \subset X_j$  whenever  $i \leq j$ . Suppose also that each  $X_i$  is equipped with a locally convex topology in such a way that the inclusions  $X_i \hookrightarrow X_j$  are continuous for all  $i \leq j$ . Equip  $X$  with the inductive locally convex topology generated by the family  $(X_i \hookrightarrow X)_{i \in I}$  of inclusions. Show that  $X \cong \varinjlim X_i$ .

**(b)** Prove that the inductive limit of every inductive system  $(X_i, \varphi_{ij})$  of locally convex spaces such that all the  $\varphi_{ij}$ 's are injective can be obtained as in (a).

**6.14.** Let  $K$  be a compact subset of  $\mathbb{C}^n$ , and let  $\mathcal{U}$  be a base of relatively compact open neighborhoods of  $K$ . Recall (see the lecture) that the space  $\mathcal{O}(K)$  of germs of holomorphic functions on  $K$  is the locally convex inductive limit  $\varinjlim \{\mathcal{O}(U) : U \in \mathcal{U}\}$ . Construct a topological isomorphism  $\mathcal{O}(K) \cong \varinjlim \{\mathcal{A}(\bar{U}) : U \in \mathcal{U}\}$ , where  $\mathcal{A}(\bar{U})$  is defined in Exercise 6.6.

**6.15.** Let  $\mathbb{D}_r = \{z \in \mathbb{C} : |z| < r\}$ . Show that the restriction map  $\mathcal{O}(\mathbb{D}_R) \rightarrow \mathcal{O}(\mathbb{D}_r)$  (where  $R > r$ ) is not topologically injective. As a corollary, the inductive sequence  $\{\mathcal{O}(\mathbb{D}_{1/n}) : n \in \mathbb{N}\}$  is not strict.

**6.16.** Prove that the following spaces are Hausdorff: (a)  $C_c(X)$  (where  $X$  is a topological space); (b)  $C_c^\infty(U)$  (where  $U$  is an open subset of  $\mathbb{R}^n$ ); (c)  $\mathcal{O}(K)$  (where  $K$  is a compact subset of  $\mathbb{C}^n$ ). (In (a) and (b), try to avoid using general results on strict inductive limits. In (c), the respective inductive limit is not strict by Exercise 6.15.)

**6.17.** Given  $z \in \mathbb{C}$ , let  $\mathcal{O}_z$  denote the space of germs of holomorphic functions at  $z$  (i.e.,  $\mathcal{O}_z = \mathcal{O}(\{z\})$ , see Exercise 6.14).

**(a)** Let  $P$  denote the set of all sequences  $p = (p_n)$ ,  $p_n \geq 0$ , such that  $p_n = o(\varepsilon^n)$  for every  $\varepsilon > 0$ . For each  $p \in P$ , define a seminorm  $\|\cdot\|_p$  on  $\mathcal{O}_z$  by  $\|f\|_p = \sum_n |c_n(f)|p_n$ , where  $c_n(f) = f^{(n)}(z)/n!$ . Show that the family  $\{\|\cdot\|_p : p \in P\}$  of seminorms is defining for  $\mathcal{O}_z$ .

**(b)** Show that a sequence  $(f_n)$  converges in  $\mathcal{O}_z$  iff there is a neighborhood  $U \ni z$  such that  $(f_n)$  is contained in  $\mathcal{O}(U)$  and converges uniformly on  $U$ .

**(c)** Is  $\mathcal{O}_z$  metrizable?

**6.18.** Let  $\mathcal{C}_0 = \varinjlim C[-1/n, 1/n]$  be the space of germs of continuous functions at  $0 \in \mathbb{R}$  equipped with the respective inductive locally convex topology, and let  $E = \{f \in \mathcal{C}_0 : f(0) = 0\}$ . Prove that the topology on  $E$  induced from  $\mathcal{C}_0$  is anti-discrete. As a corollary,  $\mathcal{C}_0$  is not Hausdorff.

**6.19.** Let  $\mathcal{O}_0$  denote the space of germs of holomorphic functions at  $0 \in \mathbb{C}$ . Write  $\mathcal{O}_0$  in the form  $\mathcal{O}_0 = \varinjlim \mathcal{O}(\mathbb{D}_{1/n})$ , where  $\mathbb{D}_{1/n} = \{z \in \mathbb{C} : |z| < 1/n\}$ . Let us now change the canonical topology on  $\mathcal{O}_0$  as follows: equip each  $\mathcal{O}(\mathbb{D}_{1/n})$  with the topology of pointwise convergence, and equip  $\mathcal{O}_0$  with the respective inductive locally convex topology. Let  $E = \{f \in \mathcal{O}_0 : f(0) = 0\}$ . Prove that the topology on  $E$  induced from  $\mathcal{O}_0$  is anti-discrete. As a corollary,  $\mathcal{O}_0$  is not Hausdorff for the above (nonstandard) topology.

**6.20.** Let  $X$  be the strict inductive limit of a sequence  $(X_n)$  of locally convex spaces. Suppose that each  $X_n$  is closed in  $X_{n+1}$ . Prove that  $B \subset X$  is bounded iff there exists  $n$  such that  $B \subset X_n$  and such that  $B$  is bounded in  $X_n$ .