

## Quotients, kernels, cokernels

(EXERCISES FOR LECTURE 4)

**Notation.** Let  $\mathbf{LCS}$  denote the category of locally convex spaces and continuous linear maps, and let  $\mathbf{HLCs}$  denote the full subcategory of  $\mathbf{LCS}$  consisting of Hausdorff spaces.

**4.1.** Let  $X$  be a topological vector space, let  $X_0 \subset X$  be a vector subspace, and let  $Q: X \rightarrow X/X_0$  denote the quotient map. Show that

- (a)  $Q$  is continuous and open;
- (b) if  $\beta$  is a neighborhood base at 0 in  $X$ , then  $\{Q(U) : U \in \beta\}$  is a base at 0 in  $X/X_0$ ;
- (c) the quotient  $X/X_0$  is Hausdorff if and only if  $X_0$  is closed in  $X$ .

**4.2.** Let  $X$  be a locally convex space,  $P$  be a directed defining family of seminorms on  $X$ , and  $X_0$  be a vector subspace of  $X$ . Show that the family  $\hat{P} = \{\hat{p} : p \in P\}$  of quotient seminorms is a defining family on  $X/X_0$ .

**4.3.** Let  $p$  be a seminorm on a vector space  $X$ , let  $X_0$  be a vector subspace of  $X$  such that  $X_0 \subset p^{-1}(0)$ , and let  $\hat{p}$  denote the quotient seminorm on  $X/X_0$ . Show that  $\hat{p}(x + X_0) = p(x)$  for all  $x \in X$ .

**4.4.** Show that the inclusion functor  $\mathbf{HLCs} \hookrightarrow \mathbf{LCS}$  has a left adjoint, and describe it explicitly. (Hint: consider  $X_h = X/\overline{\{0\}}$ .)

**4.5. (a)** Show that the kernel of a morphism  $\varphi: X \rightarrow Y$  in  $\mathbf{LCS}$  is the subspace  $\varphi^{-1}(0)$ , and that the cokernel of  $\varphi$  is the quotient  $Y/\varphi(X)$ .

- (b) Describe kernels and cokernels of morphisms in  $\mathbf{HLCs}$ .

Let  $\mathcal{A}$  be a category having a zero object. A morphism  $\varphi: X \rightarrow Y$  in  $\mathcal{A}$  is a *kernel* (resp., a *cokernel*) if there exists a morphism  $\psi: Y \rightarrow Z$  (resp.,  $\psi: Z \rightarrow X$ ) such that  $\varphi = \ker \psi$  (resp.,  $\varphi = \text{coker } \psi$ ).

**4.6. (a)** Show that a morphism  $\varphi$  in  $\mathbf{LCS}$  is a kernel if and only if it is topologically injective, and that  $\varphi$  is a cokernel if and only if it is open.

- (b) Obtain a similar characterization of kernels and cokernels in  $\mathbf{HLCs}$ .

Let  $\mathcal{A}$  be a category having a zero object. Suppose that each morphism in  $\mathcal{A}$  has a kernel and a cokernel. We define the *image* ( $\text{Im } \varphi, \text{im } \varphi$ ) of a morphism  $\varphi$  in  $\mathcal{A}$  to be the kernel of the cokernel of  $\varphi$ , and the *coimage* ( $\text{Coim } \varphi, \text{coim } \varphi$ ) of  $\varphi$  to be the cokernel of the kernel of  $\varphi$ . Thus for each  $\varphi: X \rightarrow Y$  there is a unique  $\bar{\varphi}: \text{Coim } \varphi \rightarrow \text{Im } \varphi$  making the following diagram commute:

$$\begin{array}{ccc} X & \xrightarrow{\varphi} & Y \\ \text{coim } \varphi \downarrow & & \uparrow \text{im } \varphi \\ \text{Coim } \varphi & \xrightarrow{\bar{\varphi}} & \text{Im } \varphi \end{array}$$

We say that  $\varphi$  is *strict* if  $\bar{\varphi}$  is an isomorphism.

**4.7. (a)** Describe the image and the coimage of each morphism in the categories  $\mathbf{LCS}$  and  $\mathbf{HLCs}$ .

**(b)** Show that a morphism  $\varphi: X \rightarrow Y$  in  $\mathbf{LCS}$  is strict if and only if  $\varphi$  is an open map of  $X$  onto  $\varphi(X)$ .

- (c) Describe strict morphisms in  $\mathbf{HLCs}$ .