

Normable and metrizable locally convex spaces

(EXERCISES FOR LECTURE 3)

3.1. Let S be an infinite set. Show that there are no continuous norms on \mathbb{K}^S . As a corollary, \mathbb{K}^S is not normable.

3.2. Let X be a noncompact, completely regular (i.e., Tychonoff) topological space. Show that there are no continuous norms on $C(X)$. As a corollary, $C(X)$ is not normable.

3.3. Let $U \subset \mathbb{R}^n$ be a nonempty open set. Show that there are no continuous norms on $C^\infty(U)$. As a corollary, $C^\infty(U)$ is not normable.

3.4. Let $U \subset \mathbb{C}^n$ be a nonempty open set. When does $\mathcal{O}(U)$ have a continuous norm?

3.5. Show that the following spaces are not normable, although each of them has a continuous norm:

(a) s ; (b) $C^\infty[a, b]$; (c) $\mathcal{S}(\mathbb{R}^n)$; (d) $\mathcal{O}(U)$ (where U is a nonempty domain in \mathbb{C}).

3.6. Prove that the following spaces are metrizable:

(a) $C(X)$, where X is a second countable, locally compact topological space;
 (b) $C^\infty(U)$, where $U \subset \mathbb{R}^n$ is an open set;
 (c) all spaces from Exercise 3.5.

3.7. Let S be a set. Show that \mathbb{K}^S is metrizable if and only if S is at most countable.

3.8. Show that the strongest locally convex space is metrizable if and only if it is finite-dimensional.

3.9. Let X be a normed space. Show that

(a) the dual space X' equipped with the weak* topology is metrizable if and only if the dimension of X is at most countable;
 (b) X equipped with the weak topology is metrizable if and only if it is finite-dimensional.

3.10*. Let X be a finite-dimensional vector space. Show that there is only one topology on X which makes X into a Hausdorff topological vector space, and that this topology is determined by any norm on X . (This result was proved at the lectures in the special case of locally convex topologies.)

3.11. Show that a relatively compact subset of a topological vector space is bounded.

3.12. (a) Prove that a Hausdorff locally convex space is finite-dimensional if and only if it is locally compact.

(b)* Extend (a) to arbitrary Hausdorff topological vector spaces.

3.13. Let X be a Hausdorff topological vector space. Assume that X has a bounded neighborhood of 0. Does this imply that X is normable? (For locally convex spaces, the answer is yes by Kolmogorov's criterion, see the lectures.)

3.14*. Prove that a topological vector space is semimetrizable if and only if its topology is generated by an F -seminorm. (This result was proved at the lectures in the special case of locally convex spaces.)