
22.09.2023 Topological vector spaces Exercise sheet 2

Continuous linear operators. Equivalent families of seminorms
(exercises for Lectures 2–3)

Recall (see the lectures) that the space s of rapidly decreasing sequences is defined by

s =
{
x = (xn) ∈ KN : ∥x∥k = sup

n∈N
|xn|nk < ∞ ∀k ∈ Z>0

}
. (1)

The topology on s is given by the seminorms ∥·∥k (k ∈ Z>0). Similarly, one defines the space s(Z) of rapidly decreasing
sequences on Z (more exactly, we replace N by Z and nk by (1 + |n|)k in (1)).

2.1. Let λ = (λn) ∈ KN. Consider the diagonal operator

Mλ : KN → KN, (x1, x2, . . .) 7→ (λ1x1, λ2x2, . . .).

(a) Show that Mλ is continuous.
(b) Find a condition on λ that is equivalent to Mλ(s) ⊂ s.
(c) Find a condition on λ that is necessary and sufficient for Mλ to be a continuous map of s to s.

2.2. Describe all continuous linear functionals on the spaces (a) KN; (b) s.

Recall (see the lectures) that the Schwartz space S (Rn) is defined by

S (Rn) =
{
f ∈ C∞(Rn) : ∥f∥α,β = sup

x∈Rn

|xαDβf(x)| < ∞ ∀α, β ∈ Zn
>0

}
.

The topology on S (Rn) is given by the seminorms ∥ · ∥α,β (α, β ∈ Zn
>0).

2.3. (a) Let U ⊂ Rn be an open set. Consider a differential operator

D =
∑
|α|6N

aαD
α, (2)

where aα ∈ C∞(U). Show that D is a continuous operator on C∞(U).
(b) Find a reasonable condition on aα ∈ C∞(Rn) that is sufficient for D to be a continuous operator
on S (Rn).
(c) Let us equip the space K[[x1, . . . , xn]] of formal power series with the topology of convergence
of each coefficient (in other words, we identify K[[x1, . . . , xn]] with KZn

>0 equipped with the product
topology). Show that for each aα ∈ K[[x1, . . . , xn]] formula (2) defines a continuous operator on
K[[x1, . . . , xn]].
(d) Let U ⊂ C be an open set, and let a1, . . . , aN ∈ O(U). Show that the differential operator

N∑
k=0

ak
dk

dzk

is continuous on O(U).

2.4. Let T = {z ∈ C : |z| = 1}, and let µ denote the normalized length measure on T (“normalized”
means that the measure of T is 1). Show that the Fourier transform

F : C∞(T) → s(Z), (Ff)(n) =

∫
T
f(z)z−n dµ(z),

is a topological isomorphism of C∞(T) onto s(Z).

2.5. Show that an open linear operator between topological vector spaces is surjective.

2.6. Characterize (a) topologically injective and (b) open linear operators between locally
convex spaces in terms of defining families of seminorms (in the spirit of the continuity criterion, see
the lectures).
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2.7. Show that the following families of seminorms on s are equivalent:

(1) ∥x∥(∞)
k = supn |xn|nk (k ∈ Z>0);

(2) ∥x∥(1)k =
∑

n |xn|nk (k ∈ Z>0);

(3) ∥x∥(p)k =
(∑

n |xn|pnkp
)1/p

(k ∈ Z>0).

2.8. Show that the following families of seminorms on S (Rn) are equivalent:

(1) ∥f∥α,β = sup
x∈Rn

|xαDβf(x)| (α, β ∈ Zn
>0);

(2) ∥f∥k,β = sup
x∈Rn

∥x∥k|Dβf(x)| (k ∈ Z>0, , β ∈ Zn
>0);

(3) ∥f∥(0)k,β = sup
x∈Rn

(1 + ∥x∥)k|Dβf(x)| (k ∈ Z>0, , β ∈ Zn
>0);

(4) ∥f∥(1)k,β =
∫
Rn(1 + ∥x∥)k|Dβf(x)| dx (k ∈ Z>0, , β ∈ Zn

>0);

(5) ∥f∥(p)k,β =
(∫

Rn(1 + ∥x∥)kp|Dβf(x)|p dx
)1/p

(k ∈ Z>0, , β ∈ Zn
>0).

2.9. Let U be a domain in C, and let O(U) denote the space of holomorphic functions on U . Choose
a compact exhaustion {Ui}i∈N of U (i.e., U =

∪
i Ui, Ui is open, Ui is compact, and Ui ⊂ Ui+1 for

all i ∈ N). Let p ∈ [1,+∞), and let µ denote the Lebesgue measure on C. Show that the following
families of seminorms on O(U) are equivalent:

(1) ∥f∥K = sup
z∈K

|f(z)| (K ⊂ U is a compact set);

(2) ∥f∥k,ℓ,K = sup
z=x+iy∈K

∣∣∣∣∂k+ℓf(z)

∂xk ∂yℓ

∣∣∣∣ (K ⊂ U is a compact set, k, ℓ ∈ Z>0);

(3) ∥f∥(1)i =
∫
Ui
|f(z)| dµ(z) (i ∈ N);

(4) ∥f∥(p)i =
(∫

Ui
|f(z)|p dµ(z)

)1/p

(i ∈ N).

Remark. The equivalence of (1) and (2) in Exercise 2.9 means that the topology of compact convergence and the
topology induced from C∞(U) are the same on O(U).

2.10. Let DR = {z ∈ C : |z| < R}. Given f ∈ O(DR), let cn(f) = f (n)(0)/n!. Choose p ∈ [1,+∞),
and let µ denote the Lebesgue measure on the circle |z| = r. Show that the following families of
seminorms on O(DR) are equivalent:

(1) ∥f∥K = sup
z∈K

|f(z)| (K ⊂ U is a compact set);

(2) ∥f∥(1)r =
∑∞

n=0 |cn(f)|rn (0 < r < R);

(3) ∥f∥(p)r =
(∑∞

n=0 |cn(f)|p rnp
)1/p

(0 < r < R);

(4) ∥f∥∞r = sup
n>0

|cn(f)|rn (0 < r < R);

(5) ∥f∥Ir =
∫
|z|=r

|f(z)| dµ(z) (0 < r < R);

(6) ∥f∥I,pr =
(∫

|z|=r
|f(z)|p dµ(z)

)1/p

(0 < r < R).
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