

5.1. Let X be a topological vector space, let $X_0 \subset X$ be a vector subspace, and let $\pi: X \rightarrow X/X_0$ denote the quotient map. Show that

- (a) if \mathcal{U} is a neighborhood base at 0 in X , then $\{\pi(U) : U \in \mathcal{U}\}$ is a neighborhood base at 0 in X/X_0 ;
- (b) the quotient X/X_0 is Hausdorff if and only if X_0 is closed in X .

5.2. Let X be a locally convex space, P be a directed fundamental family of seminorms on X , and X_0 be a vector subspace of X . Show that the family $\hat{P} = \{\hat{p} : p \in P\}$ of quotient seminorms is a fundamental family on X/X_0 .

5.3. Let X be a topological vector space, let p be a continuous seminorm on X , and let \hat{p} denote the quotient seminorm on $X/\overline{\{0\}}$. Show that $\hat{p}(x + \overline{\{0\}}) = p(x)$ ($x \in X$).

5.4. (a) Show that the kernel of a morphism $\varphi: X \rightarrow Y$ in the category \mathbf{LCS} of all locally convex spaces is the subspace $\varphi^{-1}(0)$, and that the cokernel of φ is the quotient $Y/\varphi(X)$.

(b) Describe kernels and cokernels of morphisms in the category \mathbf{HLCS} of all Hausdorff locally convex spaces.

5.5. (a) Show that a morphism φ in \mathbf{LCS} is a kernel if and only if it is topologically injective, and that φ is a cokernel if and only if it is open.

(b) Obtain a similar characterization of kernels and cokernels in \mathbf{HLCS} .

Let \mathcal{A} be a category having a zero object. Suppose that each morphism in \mathcal{A} has a kernel and a cokernel. We define the *image* ($\text{Im } \varphi, \text{im } \varphi$) of a morphism φ in \mathcal{A} to be the kernel of the cokernel of φ , and the *coimage* ($\text{Coim } \varphi, \text{coim } \varphi$) of φ to be the cokernel of the kernel of φ . Thus for each $\varphi: X \rightarrow Y$ there is a unique $\bar{\varphi}: \text{Coim } \varphi \rightarrow \text{Im } \varphi$ making the following diagram commute:

$$\begin{array}{ccc} X & \xrightarrow{\varphi} & Y \\ \text{coim } \varphi \downarrow & & \uparrow \text{im } \varphi \\ \text{Coim } \varphi & \xrightarrow{\bar{\varphi}} & \text{Im } \varphi \end{array}$$

We say that φ is *strict* if $\bar{\varphi}$ is an isomorphism.

5.6. (a) Describe the image and the coimage of each morphism in the categories \mathbf{LCS} and \mathbf{HLCS} .

(b) Show that a morphism $\varphi: X \rightarrow Y$ in \mathbf{LCS} is strict in the above sense if and only if it is strict as a continuous linear map (see the lectures), i.e., if and only if φ is an open map of X onto $\varphi(X)$.

(c) Describe strict morphisms in \mathbf{HLCS} .

5.7. Let X be a vector space equipped with the projective locally convex topology generated by a family of linear maps $(\varphi_i: X \rightarrow X_i)_{i \in I}$, where $(X_i)_{i \in I}$ is a family of locally convex spaces. Show that

- (a) the projective topology on X is the weakest locally convex topology on X that makes all the maps φ_i continuous;
- (b) the projective topology on X is the weakest topology on X that makes all the maps φ_i continuous;
- (c) the projective topology on X is a unique locally convex topology on X having the following property: if Y is a locally convex space, then a linear map $\psi: Y \rightarrow X$ is continuous if and only if all the maps $\varphi_i \circ \psi: Y \rightarrow X_i$ are continuous;
- (d) if σ_i is a neighborhood subbase at 0 in X_i ($i \in I$), then the family $\{\varphi_i^{-1}(U_i) : U_i \in \sigma_i, i \in I\}$ is a neighborhood subbase at 0 in X .