

4.1. Show that a relatively compact subset of a topological vector space is bounded.

4.2*. Prove that a Hausdorff topological vector space is locally compact if and only if it is finite-dimensional. (This result was proved at the lectures in the special case of locally convex spaces.)

4.3. Construct a linear map T between locally convex spaces X and Y which takes bounded subsets of X to bounded subsets of Y , but which is not sequentially continuous. Using this, find an example of a nonbornological locally convex space.

4.4*. Construct a discontinuous, sequentially continuous linear map between locally convex spaces.

4.5. Let \mathbf{LCS} denote the category of locally convex spaces, and let \mathbf{CBorn} denote the category of convex bornological spaces. Show that the functors $\mathbf{vN}: \mathbf{LCS} \rightarrow \mathbf{CBorn}$ and $\mathbf{top}: \mathbf{CBorn} \rightarrow \mathbf{LCS}$ are indeed functors (see the lecture), and construct a natural isomorphism

$$\mathrm{Hom}_{\mathbf{LCS}}(\mathbf{top}(X), Y) \cong \mathrm{Hom}_{\mathbf{CBorn}}(X, \mathbf{vN}(Y)) \quad (X \in \mathbf{CBorn}, Y \in \mathbf{LCS})$$

(in other words, $(\mathbf{top}, \mathbf{vN})$ is an adjoint pair of functors).

4.6. Let X and Y be topological vector spaces, and let \mathcal{U} be a neighborhood subbase at 0 in X . Show that a linear map $\varphi: X \rightarrow Y$ is open if and only if for each $U \in \mathcal{U}$ $\varphi(U)$ is a neighborhood of 0 in Y .

4.7. Let X and Y be locally convex spaces, and let P and Q be fundamental families of seminorms on X and Y , respectively. Let $\varphi: X \rightarrow Y$ be a continuous linear map. Show that

- (a) φ is topologically injective if and only if it is injective, and for each $p \in P$ there exist $c > 0$ and $q_1, \dots, q_n \in Q$ such that $\max_{1 \leq i \leq n} q_i(\varphi(x)) \geq c p(x)$ ($x \in X$). Moreover, if X is Hausdorff, then the latter condition implies the injectivity of φ .
- (b) φ is open if and only if for each $p \in P$ there exist $C > 0$ and $q_1, \dots, q_n \in Q$ such that for each $y \in Y$ there exists $x \in X$ satisfying $\varphi(x) = y$ and $p(x) \leq C \max_{1 \leq i \leq n} q_i(y)$.