

3.1. Let s be the space of rapidly decreasing sequences (see Exercises for Lecture 2). Show that the following families of seminorms on s are equivalent:

- (1) $\|x\|_k^{(\infty)} = \sup_n |x_n|n^k \quad (k \in \mathbb{Z}_{\geq 0});$
- (2) $\|x\|_k^{(1)} = \sum_n |x_n|n^k \quad (k \in \mathbb{Z}_{\geq 0});$
- (3) $\|x\|_k^{(p)} = \left(\sum_n |x_n|^p n^{kp} \right)^{1/p} \quad (k \in \mathbb{Z}_{\geq 0}).$

3.2. Show that the following families of seminorms on the Schwartz space $\mathcal{S}(\mathbb{R}^n)$ (see Exercises for Lecture 2) are equivalent:

- (1) $\|f\|_{\alpha, \beta} = \sup_{x \in \mathbb{R}^n} |x^\alpha D^\beta f(x)| \quad (\alpha, \beta \in \mathbb{Z}_{\geq 0}^n);$
- (2) $\|f\|_{k, \beta} = \sup_{x \in \mathbb{R}^n} \|x\|^k |D^\beta f(x)| \quad (k \in \mathbb{Z}_{\geq 0}, \beta \in \mathbb{Z}_{\geq 0}^n);$
- (3) $\|f\|_{k, \beta}^{(0)} = \sup_{x \in \mathbb{R}^n} (1 + \|x\|)^k |D^\beta f(x)| \quad (k \in \mathbb{Z}_{\geq 0}, \beta \in \mathbb{Z}_{\geq 0}^n);$
- (4) $\|f\|_{k, \beta}^{(1)} = \int_{\mathbb{R}^n} (1 + \|x\|)^k |D^\beta f(x)| dx \quad (k \in \mathbb{Z}_{\geq 0}, \beta \in \mathbb{Z}_{\geq 0}^n);$
- (5) $\|f\|_{k, \beta}^{(p)} = \left(\int_{\mathbb{R}^n} (1 + \|x\|)^{kp} |D^\beta f(x)|^p dx \right)^{1/p} \quad (k \in \mathbb{Z}_{\geq 0}, \beta \in \mathbb{Z}_{\geq 0}^n).$

3.3. Let U be a domain in \mathbb{C} , and let $\mathcal{O}(U)$ denote the space of holomorphic functions on U . Choose a compact exhaustion $\{U_i\}_{i \in \mathbb{N}}$ of U (i.e., $U = \bigcup_i U_i$, U_i is open, $\overline{U_i}$ is compact, and $\overline{U_i} \subset U_{i+1}$ for all i). Let $p \in [1, +\infty)$, and let μ denote the Lebesgue measure on \mathbb{C} . Show that the following families of seminorms on $\mathcal{O}(U)$ are equivalent:

- (1) $\|f\|_K = \sup_{z \in K} |f(z)| \quad (K \subset U \text{ is a compact set});$
- (2) $\|f\|_{k, \ell, K} = \sup_{z=x+iy \in K} \frac{\partial^{k+\ell} f(z)}{\partial x^k \partial y^\ell} \quad (K \subset U \text{ is a compact set}, k, \ell \in \mathbb{Z}_{\geq 0});$
- (3) $\|f\|_i^{(1)} = \int_{U_i} |f(z)| d\mu(z) \quad (i \in \mathbb{N});$
- (4) $\|f\|_i^{(p)} = \left(\int_{U_i} |f(z)|^p d\mu(z) \right)^{1/p} \quad (i \in \mathbb{N}).$

The equivalence of (1) and (2) means that the topology of compact convergence and the topology inherited from $C^\infty(U)$ are the same on $\mathcal{O}(U)$.

3.4. Let $\mathbb{D}_R = \{z \in \mathbb{C} : |z| < R\}$. Given $f \in \mathcal{O}(\mathbb{D}_R)$, let $c_n(f) = f^{(n)}(0)/n!$. Choose $p \in [1, +\infty)$, and let μ denote the Lebesgue measure on the circle $|z| = r$. Show that the following families of seminorms on $\mathcal{O}(\mathbb{D}_R)$ are equivalent:

- (1) $\|f\|_K = \sup_{z \in K} |f(z)| \quad (K \subset U \text{ is a compact set});$
- (2) $\|f\|_r^{(1)} = \sum_{n=0}^{\infty} |c_n(f)|r^n \quad (0 < r < R);$
- (3) $\|f\|_r^{(p)} = \left(\sum_{n=0}^{\infty} (|c_n(f)|r^n)^p \right)^{1/p} \quad (0 < r < R);$

$$(4) \|f\|_r^\infty = \sup_{n \geq 0} |c_n(f)|r^n \quad (0 < r < R);$$

$$(5) \|f\|_r^I = \int_{|z|=r} |f(z)| d\mu(z) \quad (0 < r < R);$$

$$(6) \|f\|_r^{I,p} = \left(\int_{|z|=r} |f(z)|^p d\mu(z) \right)^{1/p} \quad (0 < r < R).$$

3.5*. Let X be a finite-dimensional vector space. Show that there is only one topology on X which makes X into a Hausdorff topological vector space, and that this topology is determined by any norm on X . (This result was proved at the lectures in the special case of locally convex topologies.)

3.6*. Prove that a topological vector space is semimetrizable if and only if its topology is generated by an F -seminorm. (This result was proved at the lectures in the special case of locally convex spaces.)

3.7. Let S be an infinite set. Show that there are no continuous norms on \mathbb{K}^S . As a corollary, \mathbb{K}^S is not normable.

3.8. Let X be a noncompact, completely regular (i.e., Tychonoff) topological space. Show that there are no continuous norms on $C(X)$. As a corollary, $C(X)$ is not normable.

3.9. Let $U \subset \mathbb{R}^n$ be a nonempty open set. Show that there are no continuous norms on $C^\infty(U)$. As a corollary, $C^\infty(U)$ is not normable.

3.10. Show that the following spaces are not normable, although each of them has a continuous norm: (a) s ; (b) $C^\infty[a, b]$; (c) $\mathcal{S}(\mathbb{R}^n)$; (d) $\mathcal{O}(U)$ (where U is a domain in \mathbb{C}).

3.11. Prove that the following spaces are metrizable:

- (1) $C(X)$, where X is a second countable, locally compact topological space;
- (2) $C^\infty(U)$, where $U \subset \mathbb{R}^n$ is an open set.

3.12. Let S be a set. Show that \mathbb{K}^S is metrizable if and only if S is at most countable.

3.13. Show that the strongest locally convex space is metrizable if and only if it is finite-dimensional.

3.14. Let X be a normed space. Show that

- (a) the dual space X' equipped with the weak* topology is metrizable if and only if the dimension of X is at most countable;
- (2) X equipped with the weak topology is metrizable if and only if it is finite-dimensional.