Соглашение. Всюду ниже $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$.

Интеграл Лебега

- **6.1.** Пусть (X, μ) пространство с конечной мерой, A_1, \ldots, A_n измеримые подмножества X, причем каждая точка X принадлежит не менее чем k множествам из набора A_1, \ldots, A_n . Докажите, что $k\mu(X) \leqslant \sum_{i=1}^n \mu(A_i)$.
- **6.2.** Пусть (X,μ) пространство с конечной мерой, $f\colon X\to \mathbb{K}$ измеримая функция. Докажите, что f интегрируема тогда и только тогда, когда $\sum_n \mu\{x\in X: |f(x)|\geqslant n\}<\infty$.
- **6.3.** Пусть (X, μ) пространство с мерой, f интегрируемая функция на X со значениями в $[0, +\infty]$ или в \mathbb{K} . Докажите, что множество $\{x \in X : f(x) \neq 0\}$ σ -конечно относительно μ (т.е. является счетным объединением множеств конечной меры).
- **6.4.** Пусть (X, μ) пространство с мерой, $f, g \colon X \to \mathbb{R}$ интегрируемые функции. Докажите, что функции $\max\{f,g\}$ и $\min\{f,g\}$ интегрируемы.
- **6.5.** Верно ли, что если функция $f \colon [0,1] \to \mathbb{R}$ интегрируема по Лебегу, то и функция f^2 интегрируема?
- **6.6.** Приведите пример последовательности неотрицательных ограниченных борелевских функций на [0,1], поточечно сходящейся к нулю, интегралы которых равны 1. (Этот пример показывает, что теорема о монотонной сходимости неверна без предположения о монотонности, теорема о мажорированной сходимости неверна без предположения о существовании интегрируемой мажоранты, а неравенство $\int (\underline{\lim} f_n) d\mu \leq \underline{\lim} \int f_n d\mu$ из теоремы Фату может быть строгим.)
- **6.7.** Приведите пример последовательности (f_n) ограниченных \mathbb{R} -значных борелевских функций на [0,1], для которых числовая последовательность $\left\{\int_0^1 f_n \, dx\right\}$ ограничена, и которые поточечно сходятся к неинтегрируемой функции. (Этот пример показывает, что теорема Фату неверна без предположения о неотрицательности функций.)
- **6.8.** Пусть $f \colon \mathbb{R} \to \mathbb{K}$ интегрируемая функция. Докажите, что $\sum_n |f(x+n)| < +\infty$ для почти всех $x \in \mathbb{R}$.
- **6.9.** Пусть $c \colon [0,1] \to [0,1]$ канторова лестница. Вычислите интегралы: **(a)** $\int_0^1 c(x) \, dx;$ **(b)** $\int_0^1 x \, d\mu_c(x)$, где μ_c мера Стилтьеса на [0,1], соответствующая функции c.
- **6.10.** Приведите пример ограниченной измеримой по Лебегу функции на [0, 1], не совпадающей почти всюду ни с какой функцией, интегрируемой по Риману. (Таким образом, интегрируемых по Лебегу функций на отрезке «существенно больше», чем интегрируемых по Риману.)
- **6.11.** Приведите пример непрерывной, но не интегрируемой по Лебегу функции на $[0, +\infty)$, для которой существует несобственный интеграл $\lim_{b \to +\infty} \int_0^b f(x) \, dx$.