Продолжение мер. Мера Лебега

- **3.1.** Найдите меру Лебега множества тех точек отрезка [0,1], десятичная запись которых не содержит 1.
- **3.2.** (a) Докажите, что для каждого $a \in [0,1)$ существует замкнутое нигде не плотное подмножество $K_a \subset [0,1]$ лебеговой меры a.
- (b) Существует ли нигде не плотное подмножество меры 1 на отрезке [0,1]? Опишите все замкнутые подмножества отрезка [0,1], имеющие меру 1.
- (c) Докажите, что на отрезке [0,1] есть тощее¹ подмножество меры 1 и подмножество меры 0, не являющееся тощим.
- 3.3. Верно ли, что граница любого открытого подмножества плоскости имеет меру 0?
- **3.4.** (*Меры Лебега–Стилтьеса II*). Пусть $F: \mathbb{R} \to \mathbb{R}$ неубывающая функция, удовлетворяющая условию п. (c) задачи 2.6, т.е. такая, что соответствующая мера μ_F σ -аддитивна. Продолжим μ_F на σ -алгебру всех μ_F -измеримых множеств.
- (a) Докажите, что все борелевские множества μ_F -измеримы, и вычислите значения μ_F на всевозможных отрезках, интервалах и полуинтервалах.
- (b) Докажите, что любая σ -аддитивная борелевская мера на \mathbb{R} , конечная на ограниченных множествах, имеет вид μ_F для некоторой F, и что функция F определена однозначно с точностью до добавления константы.
- **3.5.** (a) Две σ -аддитивные борелевские² меры на \mathbb{R}^2 принимают равные значения на всех открытых треугольниках. Верно ли, что эти меры равны? Изменится ли ответ, если вместо открытых треугольников рассматривать замкнутые?
- (b) Две σ -аддитивные конечные меры на σ -алгебре \mathscr{A} принимают равные значения на множествах из некоторого семейства, порождающего \mathscr{A} . Верно ли, что эти меры равны?
- **3.6.** Докажите, что мера Лебега измеримого множества $A \subset \mathbb{R}^2$ равна точной нижней грани сумм мер открытых треугольников из счетных наборов, покрывающих A. Изменится ли ответ, если вместо открытых треугольников рассматривать замкнутые?
- 3.7. Докажите, что компакт положительной меры на прямой имеет мощность континуума.
- **3.8.** Дан компакт на плоскости меры 1. Докажите, что в нем есть замкнутое подмножество меры 1/4.
- **3.9.** Пусть μ мера (не обязательно σ -аддитивная) на некоторой алгебре подмножеств множества X. Обязательно ли внешняя мера на 2^X , порожденная μ , является ее продолжением?
- **3.10.** Пусть \mathscr{A}_0 алгебра подмножеств \mathbb{Q} , порожденная всеми полуинтервалами вида $(a,b] \cap \mathbb{Q}$ и $(a,+\infty) \cap \mathbb{Q}$ $(-\infty \leqslant a \leqslant b < +\infty)$. Определим меру μ на \mathscr{A}_0 правилом $\mu(\varnothing) = 0$ и $\mu(A) = \infty$ для $A \neq \varnothing$.
- (a) Опишите σ -алгебру \mathscr{A} подмножеств \mathbb{Q} , порожденную \mathscr{A}_0 .
- (b) Докажите, что продолжение μ до σ -аддитивной меры на \mathscr{A} не единственно. (Для σ -конечных мер таких безобразий не бывает см. лекцию.)

 $^{^{1}}$ Подмножество топологического пространства X называется mou_{um} (или множеством $nepsou_{um}$), если оно является объединением счетного числа нигде не плотных подмножеств X. Согласно теореме Бэра, полное метрическое пространство не является тощим подмножеством себя самого.

 $^{^2}$ Если X — топологическое пространство, то *борелевской мерой* на X называется мера на борелевской σ -алгебре $\mathscr{B}or(X)$.