Меры

2.1. Пусть X — множество, $\rho \colon X \to [0, +\infty)$ — произвольная функция. Определим меру μ на 2^X формулой

$$\mu(A) = \sum_{x \in A} \rho(x) \stackrel{\text{def}}{=} \sup_{B \subset A} \sum_{\text{конечно}} \sum_{x \in B} \rho(x).$$

- (a) Докажите, что $\mu \sigma$ -аддитивная мера на 2^X . При каком условии на ρ мера μ (b) конечна?
- (c) σ -конечна?
- **2.2.** Пусть X множество, \mathscr{A} алгебра его подмножеств, $\mu \colon \mathscr{A} \to [0, +\infty]$ σ -аддитивная мера. Верно ли, что для любой цепочки множеств $B_1 \supset B_2 \supset \ldots$, такой, что все $B_n \in \mathscr{A}$ и $\bigcap_n B_n \in \mathscr{A}$, выполнено условие $\mu(\bigcap_n B_n) = \lim_n \mu(B_n)$? (При условии $\mu(B_1) < \infty$ это верно см. лекцию.)
- **2.3.** Пусть μ конечная мера на алгебре $\mathscr{A} \subset 2^X$. Докажите, что
- (a) если $A, B \in \mathscr{A}$ и $\mu(A \triangle B) = 0$, то $\mu(A) = \mu(B)$;
- (b) бинарное отношение на \mathscr{A} , определенное правилом $A \sim B \iff \mu(A \triangle B) = 0$, является отношением эквивалентности;
- (c) функция $\rho(A, B) = \mu(A \triangle B)$ является корректно определенной метрикой на фактормножестве \mathscr{A}/\sim .

Определение 2.1. Пусть $(A_n)_{n\in\mathbb{N}}$ — последовательность подмножеств множества X. Ее верхний предел $\overline{\lim} A_n$ и нижений предел $\underline{\lim} A_n$ определяются формулами $\overline{\lim} A_n = \bigcap_n \bigcup_{k\geqslant n} A_k$, $\underline{\lim} A_n = \bigcup_n \bigcap_{k\geqslant n} A_k$. Иначе говоря, $\overline{\lim} A_n$ состоит из тех точек, которые входят в бесконечное число A_n -ых, а $\underline{\lim} A_n$ — из тех точек, которые входят во все A_n , начиная с некоторого. В частности, всегда $\underline{\lim} A_n \subseteq \overline{\lim} A_n$. Последовательность (A_n) будем называть cxodsumeucs, если $\underline{\lim} A_n = \overline{\lim} A_n$.

- **2.4.** Пусть μ конечная σ -аддитивная мера на σ -алгебре множеств $\mathscr{A}\subseteq 2^X,\,A_1,A_2,\ldots\in\mathscr{A}$.
- (a) Докажите, что $\mu(\underline{\lim} A_n) \leqslant \underline{\lim} \mu(A_n)$ и $\mu(\overline{\lim} A_n) \geqslant \overline{\lim} \mu(A_n)$.
- (b) Докажите, что если (A_n) сходится, то $\mu(\lim A_n) = \lim \mu(A_n)$.
- (c) Докажите, что условие п. (b) эквивалентно σ -аддитивности μ .
- (d) (лемма Бореля–Кантелли). Докажите, что если $\sum_n \mu(A_n) < \infty$, то $\mu(\overline{\lim} A_n) = 0$. (Вероятностная интерпретация: если ряд из вероятностей событий сходится, то с вероятностью единица может произойти лишь конечное число этих событий.)

Определение 2.2. Семейство подмножеств $\mathcal K$ множества X называется компактным классом, если для любой последовательности (K_n) множеств из $\mathcal K$ со свойством $\bigcap K_n = \emptyset$ найдется такое $N \in \mathbb N$, что $\bigcap_{n \le N} K_n = \emptyset$.

- **2.5.** Пусть μ конечная мера на алгебре $\mathscr{A} \subset 2^X$. Предположим, что существует такой компактный класс $\mathscr{K} \subset \mathscr{A}$, что для каждого $A \in \mathscr{A}$ справедливо равенство $\mu(A) = \sup_{K \in \mathscr{K}, \ K \subset A} \mu(K)$.
- (a) Докажите, что μ σ -аддитивна.
- (b) Получите отсюда еще одно доказательство σ -аддитивности меры Лебега на алгебре подмножеств куба $[a,b]^n$, порожденной произведениями одномерных промежутков.
- **2.6.** (*Меры Лебега–Стилтьеса*). Пусть \mathscr{A} алгебра подмножеств \mathbb{R} , порожденная всеми полуинтервалами вида (a,b] и $(a,+\infty)$ $(-\infty\leqslant a\leqslant b<+\infty)$. Пусть $F\colon\mathbb{R}\to\mathbb{R}$ неубывающая функция.
- (a) Положим $F(\pm \infty) = \lim_{x \to \pm \infty} F(x)$. Докажите, что на $\mathscr A$ существует единственная мера μ_F , такая, что $\mu_F((a,b]) = F(b) F(a)$ и $\mu_F((a,+\infty)) = F(+\infty) F(a)$ (где $-\infty \leqslant a \leqslant b < +\infty$.)

- (b) Какой функции F соответствует мера Лебега? Мера Дирака? Мера $\mu(A) = \sum_{x_n \in A} p_n$, где $\{x_n\}$ произвольное счетное подмножество \mathbb{R} , а (p_n) последовательность неотрицательных чисел, удовлетворяющая условию $\sum_n p_n < \infty$? (c) Придумайте условие на функцию F, необходимое и достаточное для того, чтобы μ_F была
- σ -аддитивной.