- **2.1.** Для $a \in \mathbb{R}$ положим $\lceil a \rceil = \min([a, +\infty) \cap \mathbb{Z})$ и определим функцию $F \colon (0, +\infty) \to \mathbb{R}$ формулой $F(x) = x \lceil 1/x \rceil$. Вычислите $\int_{[1/\sqrt{15},2]} x \, d\mu_F(x)$, где μ_F мера Лебега-Стилтьеса, построенная по F (см. задачи 2.6 и 3.4 из списков к семинарам).
- **2.2.** Пусть (X, μ) пространство с мерой и $f: X \to \mathbb{K}$ (где $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$) интегрируемая функция. Докажите, что $\mu\{x \in X: |f(x)| \ge t\} = o(t)$ при $t \to +\infty$.
- **2.3.** Приведите пример последовательности (f_n) неотрицательных ограниченных борелевских функций на [0,1], поточечно сходящейся к нулю, интегралы которых стремятся к нулю, но для которых функция $\sup_n f_n$ не интегрируема.
- **2.4.** Пусть (X, μ) пространство с конечной мерой, и пусть функция $f: X \times [0, 1] \to \mathbb{R}$ такова, что для каждого $t \in [0, 1]$ функция $x \mapsto f(x, t)$ интегрируема на X, и для каждого $x \in X$ функция $t \mapsto f(x, t)$ непрерывна на [0, 1]. Докажите, что функция $t \mapsto \int_X f(x, t) \, d\mu(x)$ борелевская.
- **2.5.** Пусть (a_n) последовательность положительных чисел, причем $\sum_n a_n \ln n < +\infty$. Докажите, что для любой последовательности (x_n) в $\mathbb R$ ряд $\sum_n \frac{a_n}{|x-x_n|}$ сходится для почти всех $x \in \mathbb R$. (Указание: рассмотрите множества вида $[-c,c] \setminus \bigcup_n (x_n-\varepsilon/n^2,x_n+\varepsilon/n^2)$.)