- 1. Пусть X и Y множества, \mathscr{F}_1 и \mathscr{F}_2 полуалгебры подмножеств X и Y соответственно. Покажите, что семейство множеств $\{A \times B : A \in \mathscr{F}_1, \ B \in \mathscr{F}_2\}$ полуалгебра подмножеств $X \times Y$.
- 2. Докажите, что $\mathscr{B}or(\mathbb{R}^n)$ совпадает с наименьшей σ -алгеброй подмножеств \mathbb{R}^n , относительно которой измеримы все непрерывные функции с компактным носителем.
- 3. Пусть X множество, $\rho \colon X \to [0, +\infty)$ произвольная функция. Определим меру μ на 2^X формулой

$$\mu(A) = \sum_{x \in A} \rho(x) \stackrel{\text{def}}{=} \sup_{B \subset A} \sum_{\text{конечно}} \sum_{x \in B} \rho(x).$$

Докажите, что $\mu-\sigma$ -аддитивная мера на 2^X . При каком условии на ρ мера μ конечна? σ -конечна?

- 4. Пусть X множество, \mathscr{A} алгебра его подмножеств, $\mu \colon \mathscr{A} \to [0, +\infty]$ σ -аддитивная мера. Верно ли, что для любой цепочки множеств $B_1 \supset B_2 \supset \ldots$, такой, что все $B_n \in \mathscr{A}$ и $\bigcap_n B_n \in \mathscr{A}$, выполнено условие $\mu(\bigcap_n B_n) = \lim_n \mu(B_n)$? (При условии $\mu(B_1) < \infty$ это верно см. лекцию.)
- 5. Семейство подмножеств \mathscr{K} множества X называется компактным классом, если для любой последовательности (K_n) множеств из \mathscr{K} со свойством $\bigcap K_n = \varnothing$ найдется такое $N \in \mathbb{N}$, что $\bigcap_{n \leq N} K_n = \varnothing$. Пусть теперь μ конечная мера на алгебре $\mathscr{A} \subset 2^X$, причем существует такой компактный класс $\mathscr{K} \subset \mathscr{A}$, что для каждого $A \in \mathscr{A}$ справедливо равенство $\mu(A) = \sup_{K \in \mathscr{K}, K \subset A} \mu(K)$.
 - (a) Докажите, что μ σ -аддитивна.
 - (b) Получите отсюда еще одно доказательство σ -аддитивности меры Лебега на алгебре подмножеств куба $[a,b]^n$, порожденной произведениями одномерных промежутков.
- 6. (а) Докажите, что для каждого $a \in [0,1)$ существует замкнутое нигде не плотное подмножество $K_a \subset [0,1]$ лебеговой меры a.
 - (b) Существует ли нигде не плотное подмножество меры 1 на отрезке [0, 1]?
 - (c) Докажите, что на отрезке [0,1] есть тощее 1 подмножество меры 1 и подмножество меры 0, не являющееся тощим.
- 7. Пусть μ конечная положительная мера на алгебре множеств $\mathscr{A} \subset 2^X$. Докажите, что множество $A \subset X$ μ -измеримо тогда и только тогда, когда $\mu^*(A) + \mu^*(X \setminus A) = \mu(X)$.

 $^{^{1}}$ Подмножество топологического пространства X называется mou_{UM} , если оно является объединением счетного числа нигде не плотных подмножеств X. Согласно теореме Бэра, полное метрическое пространство не является тощим подмножеством себя самого.