Сходимость измеримых функций

- 1. Приведите пример (a) поточечно сходящейся к нулю последовательности измеримых функций на прямой, не сходящейся никуда по мере; (b) равномерно сходящейся к нулю последовательности интегрируемых функций на прямой, не сходящейся никуда по \mathcal{L}^1 -полунорме.
- 2. Приведите пример последовательности ограниченных борелевских функций на [0,1], сходящейся к нулю по мере, но не сходящейся никуда по \mathcal{L}^1 -полунорме.
- 3. Приведите пример последовательности ограниченных борелевских функций на [0,1], сходящейся к нулю по \mathscr{L}^1 -полунорме, но не сходящейся ни в одной точке.
- 4. Пусть (f_n) и (g_n) последовательности измеримых функций на пространстве с мерой (X,μ) , сходящиеся по мере к измеримым функциям f и g соответственно. Докажите, что $f_n + g_n \stackrel{\mu}{\to} f + g$.
- 5. Пусть (f_n) и (g_n) последовательности измеримых функций на пространстве с конечной мерой (X,μ) , сходящиеся по мере к измеримым функциям f и g соответственно. Докажите, что $f_n g_n \stackrel{\mu}{\to} f g$.
- 6. Пусть (f_n) последовательность измеримых функций на пространстве с мерой (X,μ) . Предположим, что для некоторой измеримой функции f и для каждого $n \in \mathbb{N}$ справедливо неравенство $\mu\{x: |f_n(x)-f(x)| \geq \alpha_n\} \leq \beta_n$, где (α_n) и (β_n) последовательности положительных чисел, $\lim_{n\to\infty}\alpha_n=0$ и $\sum_n\beta_n<\infty$. (Грубо говоря, это означает, что (f_n) «очень быстро сходится по мере» к f.) Докажите, что $f_n\to f$ почти всюду.
- 7. Пусть (X,μ) пространство с конечной мерой. Обозначим через $L^0(X,\mu)$ пространство классов эквивалентности (здесь эквивалентность это равенство μ -п.в.) измеримых функций на X. Зафиксируем неубывающую ограниченную непрерывную функцию $\psi\colon [0,+\infty)\to [0,+\infty)$, такую, что $\psi(0)=0,\,\psi$ строго возрастает в некоторой окрестности нуля, и $\psi(s+t)\leq \psi(s)+\psi(t)$ для всех s,t. (Например, можно положить $\psi(t)=t/(1+t)$ или $\psi(t)=\max\{1,t\}$.) Докажите, что формула $\rho(f,g)=\int_X \psi(|f-g|)\,d\mu$ определяет метрику на $L^0(X,\mu)$, и что сходимость по этой метрике равносильна сходимости по мере.
- 8. Пусть (X, μ) пространство с мерой. Обозначим через $L^0(X, \mu)$ пространство классов эквивалентности (здесь эквивалентность это равенство μ -п.в.) измеримых функций на X. Докажите, что формула

$$\rho(f,g) = \min \bigl\{ 1, \ \inf \{ a \geq 0 : \mu \{ x : |f(x) - g(x)| \geq a \} < a \} \bigr\}$$

определяет метрику на $L^0(X,\mu)$, и что сходимость по этой метрике равносильна сходимости по мере.

9. Докажите, что на пространстве $L^0[0,1]$ нет топологии, сходимость в которой совпадала бы со сходимостью почти всюду.