Мера Лебега

- 1. Две конечные борелевские 1 меры на $[0,1]^2$ имеют равные значения на всех замкнутых (а) квадратах; (б) треугольниках. Доказать, что эти меры равны.
- 2. Доказать, что мера Лебега измеримого множества $E \subset \mathbb{R}^2$ равна точной нижней грани сумм мер треугольников из счетных наборов, покрывающих E.
- 3. Верно ли, что граница всякого открытого множества на плоскости имеет лебеговскую меру нуль?
- 4. Доказать, что компакт на прямой положительной меры Лебега имеет мощность континуума.
 - 5. Построить пример компакта в [0,1] меры $1/\pi$ без внутренних точек.
- 6. Пусть $A \subset \mathbb{R}$ измеримое множество положительной меры Лебега. Докажите, что для каждого $\varepsilon \in (0,1)$ найдется такой интервал I, что $\lambda(A \cap I) > (1-\varepsilon)\lambda(I)$ (где λ мера Лебега).
- 7. Дан компакт на плоскости лебеговской меры 1. Доказать, что в нем есть замкнутая часть меры 1/4.
 - 8. Показать, что имеется ровно континуум компактов положительной меры Лебега в \mathbb{R}^3 .
- 9. Для всякого ли $\varepsilon \in (0,1)$ в единичном квадрате есть компакт без внутренних точек меры Лебега ε ?
- 10. Верно ли, что всякое объединение отличных от точек замкнутых квадратов на плоскости измеримо по Лебегу?
- 11. Доказать, что квадрат на плоскости можно представить в виде объединения дизъюнктных открытых кругов и множества меры нуль.
- 12. Доказать, что квадрат на плоскости нельзя представить в виде объединения замкнутых кругов ненулевых радиусов с попарно непересекающимися внутренностями.
- 13. Пусть $A \subset \mathbb{R}$ измеримое множество положительной меры Лебега. Докажите, что множество $A-A=\{a-b:a,b\in A\}$ содержит окрестность нуля.

¹Борелевская мера — это σ -аддитивная мера на борелевской σ -алгебре.