The Bott periodicity (EXERCISES FOR LECTURE 19) - **7.1.** Let A be a C^* -algebra, $B \subset A$ a closed *-subalgebra, and $I \subset A$ a closed two-sided ideal. Show that the *-subalgebra B + I is closed in A. (This fact was used in the proof of the Bott periodicity, see the lectures.) - **7.2.** Let $\varphi_i: A_i \to B_i$ be C^* -algebra homomorphisms (i = 1, 2). Show that, if both φ_1 and φ_2 are injective (resp. surjective), then so is $\varphi_1 \otimes_* \varphi_2: A_1 \otimes_* A_2 \to B_1 \otimes_* B_2$. (This fact was used in the proof of the Bott periodicity, see the lectures.) - **7.3.** Let $\varphi, \psi: A \to B$ be C^* -algebra homomorphisms. Assume that $\varphi \perp \psi$ (this means that $\varphi(A)\psi(A) = 0$). Show that $\varphi+\psi$ is a *-homomorphism, and that $(\varphi+\psi)_* = \varphi_* + \psi_* \colon K_i(A) \to K_i(B)$ (i = 0, 1). (This fact was used in the proof of the Bott periodicity, see the lectures.) - **7.4.** Using the cyclic 6-term exact sequence, find a simple proof of the fact that $K_0(\mathcal{Q}(H)) = 0$. (Compare with the brutal force proof hinted at in Exercise 4.12.) - **7.5.** Construct an extension $C_0(\mathbb{R}^2) \hookrightarrow C(\mathbb{R}P^2) \to C(S^1)$. Using this extension, calculate $K^i(\mathbb{R}P^2)$ (i=0,1). - **7.6.** Construct extensions $C_0(\mathbb{R}^3) \hookrightarrow C(\mathbb{R}P^3) \to C(\mathbb{R}P^2)$ and $C_0(\mathbb{R}^3 \sqcup \mathbb{R}^3) \hookrightarrow C(S^3) \to C(S^2)$. Using these extensions and the naturality of the index map, calculate $K^i(\mathbb{R}P^3)$ (i=0,1). - **7.7.** Construct an extension $C_0(\mathbb{C}^n) \hookrightarrow C(\mathbb{C}\mathrm{P}^n) \to C(\mathbb{C}\mathrm{P}^{n-1})$. Using this extension, calculate $K^i(\mathbb{C}\mathrm{P}^n)$ (i=0,1). - **7.8.** Let v be the right shift operator acting on the Hilbert space $H = \ell^2(\mathbb{Z}_{\geq 0})$. Given $n \in \mathbb{N}$, let \mathcal{T}_n denote the C^* -subalgebra of $\mathcal{B}(H)$ generated by $\mathcal{K}(H)$ and v^n . Calculate $K_i(\mathcal{T}_n)$ (i = 0, 1). - **7.9** (the Bott map). Let A be a C^* -algebra. In (a)–(c) below, we assume that A is unital. - (a) Construct a group isomorphism $$U_n(SA) \cong \{ f \in C(S^1, U_n(A)) : f(1) = 1_n \}.$$ - (b) Given a projection $p \in M_n(A)$, define $f_p \colon S^1 \to M_n(A)$ by $f_p(z) = \bar{z}p + 1_n p$. Show that f_p maps S^1 to $U_n(A)$ and hence (by (a)) determines an element $f_p \in U_n(SA)$. - (c) Prove that there exists a unique group homomorphism $\beta_A \colon K_0(A) \to K_2(A) = K_1(SA)$ taking [p] to $[f_p]$, for every projection $p \in M_{\infty}(A)$. - (d) If A is not necessarily unital, show that β_{A_+} restricts to a homomorphism $\beta'_A \colon K_0(A) \to K_2(A)$. Prove that $\beta'_A = \beta_A$ if A is already unital. (Because of this, we write β_A for β'_A below.) - (e) Let $\alpha_A \colon K_2(A) \to K_0(A)$ be the natural isomorphism constructed in Cuntz's proof of the Bott periodicity (see the lectures). Show that $\alpha_A \beta_A = 1$, and so $\beta_A = \alpha_A^{-1}$ is an isomorphism. *Hint.* Show that the matrix $$\begin{pmatrix} (v^* - 1) \otimes p + 1 \otimes 1 & 0 \\ e_{00} \otimes p & (v - 1) \otimes p + 1 \otimes 1 \end{pmatrix}$$ is unitary in $M_2(\mathcal{T}_0 \otimes_* A)$ and lifts $f_p \otimes f_p^*$ under the homomorphism induced by the quotient map $\mathcal{T}_0 \otimes_* A \to SA$ in the reduced Toeplitz extension tensored by A. - **7.10** (external product and the Bott map). Let A, B be C^* -algebras. - (a) Assuming that A and B are unital, show that there exists a \mathbb{Z} -bilinear map $\mu_{A,B} \colon K_0(A) \times K_0(B) \to K_0(A \otimes_* B)$ uniquely determined by $\mu_{A,B}([p],[q]) = [p \otimes q]$ for projections $p \in M_m(A)$, $q \in M_n(B)$. (Here we identify $M_m(A) \otimes_* M_n(B)$ with $M_{mn}(A \otimes_* B)$.) - (b) By using unitizations, extend the definition of $\mu_{A,B}$ to nonunital C^* -algebras. - (c) By using suspensions, extend $\mu_{A,B}$ to a map $K_i(A) \times K_j(B) \to K_{i+j}(A \otimes_* B)$ $(i, j \in \mathbb{Z}_{\geq 0})$. - (d) (the Bott element). Let L denote the canonical line bundle over $S^2 = \mathbb{C}\mathrm{P}^1$, and let $b = [L^*] [1] \in K^0(S^2)$, where 1 stands for the 1-dimensional trivial bundle. Identifying S^2 with $(\mathbb{R}^2)_+$, observe that b actually belongs to $K^0(\mathbb{R}^2) \subset K^0(S^2)$. Since $K^0(\mathbb{R}^2) \cong K_0(C_0(\mathbb{R}^2)) = K_0(S^2\mathbb{C}) = K_2(\mathbb{C})$, we have $b \in K_2(\mathbb{C})$. - (e) Show that, for each C^* -algebra A and each $x \in K_0(A)$, we have $\beta_A(x) = \mu_{\mathbb{C},A}(b,x)$ (where β_A is the Bott map, see Exercise 7.9).