K_1 for Banach algebras. The index map

(EXERCISES FOR LECTURES 16–19)

- **6.1.** Given a (not necessarily unital) ring R, recall that the group $GL_n^+(R)$ is defined to be the kernel of the homomorphism $GL_n(R_+) \to GL_n(\mathbb{Z})$ induced by the augmentation $R_+ \to \mathbb{Z}$.
- (a) Suppose that R is a two-sided ideal of a unital ring S. Construct an isomorphism between $\mathrm{GL}_n^+(R)$ and $\mathrm{Ker}(\mathrm{GL}_n(S) \to \mathrm{GL}_n(S/R))$.
- (b) Deduce that, if R is already unital, then $GL_n^+(R) \cong GL_n(R)$.
- **6.2.** Let A be a separable Banach algebra. Without using the isomorphism $K_1(A) \cong K_0(SA)$, show that $K_1(A)$ is at most countable.
- **6.3.** Let A be a Banach algebra. Equip $GL_{\infty}(A)$ with the inductive (=final) topology generated by the inclusions $GL_n(A) \hookrightarrow GL_{\infty}(A)$ for all $n \in \mathbb{N}$. Show that
- (a) $GL_{\infty}(A)$ is a topological group, and $GL_{\infty}(A) = \varinjlim GL_n(A)$ in the category of topological groups;
- (b) two elements of $GL_{\infty}(A)$ are homotopic iff they are homotopic in $GL_n(A)$ for some $n \in \mathbb{N}$;
- (c) $GL_{\infty}(A)$ is locally path connected;
- (d) for every topological group G, the set $\pi_0(G)$ of path connected components of G is naturally isomorphic to the quotient G/G_0 , where G_0 is the path connected component of the identity (show, in particular, that G_0 is a normal subgroup of G);
- (e) there exists a natural isomorphism $K_1(A) \cong \pi_0(GL_\infty(A))$.
- **6.4.** Given a Banach algebra A, construct an isomorphism $K_1(A) \cong \lim(\operatorname{GL}_n(A)/\operatorname{GL}_n(A)_0)$.
- **6.5.** Without using the isomorphism $K_1(A) \cong K_0(SA)$, show that the functor K_1 defined on the category of Banach algebras is **(a)** half exact; **(b)** split exact; **(c)** homotopy invariant; **(d)** continuous; **(e)** stable; **(f)** satisfies $K_1(A \times B) \cong K_1(A) \times K_1(B)$; **(g)** satisfies $K_1(A^{\text{op}}) \cong K_1(A)$.
- **6.6.** Let A be a C^* -inductive limit of finite-dimensional C^* -algebras (see examples in Exercise Sheet 5). Show that $K_1(A) = 0$.
- **6.7.** Calculate $K_1(C^*(\mathbf{F}_2))$. (Hint: see the hint to Exercise 4.15.)
- **6.8.** Prove the naturality of the index map $GL_{\infty}(S) \to K_0(I)$ associated to a ring extension $I \hookrightarrow R \to S$ (see the lectures for a precise statement).
- **6.9.** Let $A \to B$ be a surjective *-homomorphism between C^* -algebras. Without using the Bartle-Graves theorem, show that, for every locally compact Hausdorff topological space X, the induced map $C_0(X,A) \to C_0(X,B)$ is surjective. Deduce that the functor $C_0(X,-)$ takes C^* -algebra extensions to C^* -algebra extensions.
- **6.10.** Given a pointed topological space (Y, y_0) , let ΣY denote the (topological) reduced suspension over Y, i.e., the space obtained from $Y \times [0, 1]$ by collapsing $(Y \times \{0\}) \cup (Y \times \{1\}) \cup (\{y_0\} \times [0, 1])$ to a point v_0 . Show that, if X is a locally compact Hausdorff topological space, then the $(C^*$ -algebraic) suspension over $C_0(X)$ is isomorphic to $C_0(\Sigma(X_+) \setminus \{v_0\})$.

- **6.11.** Let G be a topological group, and let $[S^1, G]$ denote the set of homotopy classes of continuous maps from S^1 to G.
- (a) Show that $[S^1, G]$ is the quotient of $C(S^1, G)$ modulo a certain normal subgroup and hence it is itself a group in a natural way. (Here the multiplication on $C(S^1, G)$ comes from the multiplication on G.)
- (b) Let $G_0 \subset G$ denote the path connected component of the identity $e \in G$, and let $E = \{[f] \in [S^1, G] : f(1) \in G_0\}$. Show that E is a subgroup of $[S^1, G]$, and construct an isomorphism between E and the fundamental group $\pi_1(G, e)$.
- (c) Given a Banach algebra A, construct an isomorphism $K_2(A) \cong \pi_1(\mathrm{GL}_\infty(A), e)$. (Hint: use the split extension $SA \hookrightarrow C(S^1, A) \to A$.)