
08.05.2025 K-theory of C∗-algebras Exercise sheet 5

Inductive limits of C∗-algebras. Continuity and stability of K0

(exercises for Lectures 13–15)

5.1. (a) Let A be a set, and let (Ai)i∈I be a family of subsets of A indexed by a directed poset I in
such a way that Ai ⊂ Aj whenever i 6 j. Thus the sets Ai together with the inclusion maps Ai ↪→ Aj

form an inductive system. Show that lim−→Ai =
∪

iAi, and that the canonical maps Ai → lim−→Ai are
the inclusion maps.
(b) Prove a similar result for the categories of groups, R-modules (where R is a ring), k-algebras
(where k is a commutative ring), ∗-algebras.
(c) Prove a similar result for the categories Ban1 (objects = Banach spaces, morphisms = contrac-
tive linear maps), BanAlg1 (objects = Banach algebras, morphisms = contractive algebra homomor-
phisms), C∗-Alg (objects = C∗-algebras, morphisms = ∗-homomorphisms). In all these cases, we
have lim−→Ai =

∪
i Ai.

5.2. Let E1 ⊂ E2 ⊂ E3 ⊂ . . . be an increasing sequence of closed vector subspaces of a Banach space
E. Show that such a sequence does not have an inductive limit in the category of Banach spaces and
bounded linear maps unless it stabilizes.

5.3. Verify the details of the construction of lim−→Ai given at the lecture for the categories of
(a) sets; (b) abelian groups; (c) rings; (d) ∗-algebras; (e) C∗-algebras.

5.4. Let (Ai) be an inductive system of C∗-algebras. Construct a natural isomorphism between
C∗- lim−→((Ai)+) and (C∗- lim−→Ai)+.

5.5. Let A = C∗- lim−→Mn, where Mn = Mn(C) is the algebra of complex n × n-matrices, and the
maps Mn ↪→ Mn+1 are given by a 7→ a⊕ 0. Show that A ∼= K, the algebra of compact operators on
an infinite-dimensional separable Hilbert space.

Hint. Choose an orthonormal basis (en)n∈N ofH, let Pn denote the projection onto span{e1, . . . , en},
and let An = PnKPn. Show that (An) and (Mn) are isomorphic as inductive sequences of C∗-algebras,
and that

∪
n An is dense in K.

5.6. Given n ∈ N, define a homomorphism Mn ⊕C → Mn+1 ⊕C by (a, λ) 7→ (a⊕ λ, λ). Identify the
C∗-inductive limit A of this sequence, and calculate K0(A). (Hint: A is a certain operator C∗-algebra
related to K.)

5.7. Define d : C → C⊕ C by d(z) = (z, z), and consider the inductive sequence

C d−→ C2 d⊕d−−→ C4 d⊕4

−−→ C8 d⊕8

−−→ . . .

of C∗-algebras.
(a) Show that C∗- lim−→C2n ∼= C(K), the algebra of continuous functions on the Cantor set.
(b) Construct an isomorphism K0(C(K)) ∼= C(K,Z).

5.8. Given n ∈ N, define a homomorphism M2n → M2n+1 by a 7→ a ⊕ a. The C∗-algebra A =
C∗- lim−→M2n is called the CAR algebra (CAR means “canonical anticommutation relations”). Show
that K0(A) ∼= Z[1/2], the group of dyadic rationals.

1



08.05.2025 K-theory of C∗-algebras Exercise sheet 5

5.9. Given n ∈ N, define a homomorphism M2n ⊕M2n → M2n+1 ⊕M2n+1 by (a, b) 7→ (a⊕ b, a⊕ b).
Show that the C∗-inductive limit of this sequence is isomorphic to the CAR algebra (see Exercise 5.8).

5.10. Let A = C∗- lim−→Mn!, where the maps Mn! → M(n+1)! are given by a 7→ a⊕ · · · ⊕ a︸ ︷︷ ︸
n+1

.

Calculate K0(A).

5.11. Define sequences (mk) and (nk) recursively by

m1 = n1 = 1, mk+1 = mk + nk, nk+1 = mk

(thus both (mk) and (nk) are the Fibonacci numbers shifted by 1). Let Ak = Mmk
⊕ Mnk

, and
define a homomorphism Ak → Ak+1 by (a, b) 7→ (a ⊕ b, a). The Fibonacci algebra is defined by
A = C∗- lim−→Ak. Calculate K0(A).

5.12. Given n ∈ N, let An =
⊕n

k=0M(nk)
, and define a homomorphism An → An+1 by

(a1, . . . , an) 7→ (a1, a1 ⊕ a2, a2 ⊕ a3, . . . , an−1 ⊕ an, an).

The C∗-algebra A = C∗- lim−→An is called the GICAR algebra (GICAR means “gauge invariant canon-
ical anticommutation relations”). Show that

K0(A) ∼=
{
(x+ 1)−np(x) : p ∈ Z[x], deg p 6 n, n ∈ Z>0

}
.

5.13. (a) Given a ∈ Mn,m(Z>0), define ℓa : Zm → Zn by ℓa(x) = ax (where x is viewed as a column
vector). Construct finite-dimensional C∗-algebras A and B such that K0(A) ∼= Zm, K0(B) ∼= Zn,
and ℓa = (φa)∗ for a suitable ∗-homomorphism φa : A → B.
(b) Show that for every countable torsion-free abelian group G there exists a C∗-algebra A such
that K0(A) ∼= G.

Hints. (a) A = Mk1 ⊕ · · · ⊕ Mkm and B = Mℓ1 ⊕ · · · ⊕ Mℓn , where k1, . . . km are arbitrary
and ℓ1, . . . , ℓn are big enough. (b) Write G as an inductive limit of free finitely generated abelian
groups and connecting maps as in (a).

5.14. Given n ∈ N, let An = C[−1/n, 1/n], and let An → An+1 be the restriction map. Let also
Bn = {f ∈ An : f(0) = 0}. Show that
(a) A = alglim−→An is the algebra of germs of continuous functions at 0 ∈ R, B = alglim−→Bn is the
maximal ideal of A consisting of germs vanishing at 0, and both A and B are infinite-dimensional
∗-algebras (here alglim−→ denotes the inductive limit in the category of ∗-algebras);
(b) C∗- lim−→An

∼= C and C∗- lim−→Bn = 0.

5.15. Given a C∗-algebra A, construct a natural homomorphism K00(A) → K0(A) (where K00(A) is
defined in Exercise 2.4), and show that this map is an isomorphism provided that A has a countable
approximate identity consisting of projections.

(Hint: see the hint to Exercise 5.5.)

5.16. Let A be a C∗-algebra. Show that
(a) for each pair p, q ∈ Pr(A⊗∗ K) there exist p′, q′ ∈ Pr(A⊗∗K) such that p′ ∼

MvN
p, q′ ∼

MvN
q, and

p′ ⊥ q′;
(b) Pr(A⊗∗K) is an abelian semigroup under the operation [p]+ [q] = [p′+ q′] (show, in particular,
that the operation is well defined);
(c) if A is unital, then K0(A) ∼= Gr(Pr(A⊗∗K)).
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