K_0 for C^{*}-algebras. Projections and unitaries

(EXERCISES FOR LECTURES 12–13)

4.1. Let *H* be a Hilbert space, and let *A* be a *-subalgebra of $\mathscr{B}(H)$ containing $\mathbf{1}_H$. Show that (a) $u \in A$ is an isometry (i.e., $u^*u = 1$) $\iff ||u(x)|| = ||x||$ for all $x \in H \iff \langle u(x) | u(y) \rangle = \langle x | y \rangle$ for all $x, y \in H$;

(b) $u \in A$ is unitary $\iff u$ is a surjective (or, equivalently, bijective) isometry;

(c) $u \in A$ is a coisometry (i.e., $uu^* = 1$) \iff there exists a closed vector subspace $H_0 \subset H$ such that $u|_{H_0^{\perp}} = 0$ and that $u|_{H_0}$ maps H_0 isometrically onto H (in fact, $H_0 = (\text{Ker } u)^{\perp}$).

4.2. Let A be a unital C^* -algebra, $A \neq 0$. Show that

- (a) if $u \in A$ is an isometry or a coisometry, then ||u|| = 1;
- (b) if $u \in A$ is unitary, then $\sigma(u) \subset \mathbb{T}$ (where $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$);
- (c) if $u \in A$ is a noninvertible isometry or a noninvertible coisometry, then $\sigma(u) = \mathbb{D}$ (where $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$).

4.3. Let H be a Hilbert space, and let A be a *-subalgebra of $\mathscr{B}(H)$. Show that

(a) $p \in A$ is a projection (i.e., $p = p^2 = p^*$) \iff there exists a closed vector subspace $H_0 \subset H$ such that $p|_{H_0} = \mathbf{1}_{H_0}$ and $p|_{H_0^{\perp}} = 0$ (in fact, $H_0 = \operatorname{Im} p = (\operatorname{Ker} p)^{\perp}$);

(b) $v \in A$ is a partial isometry (i.e., $vv^*v = v$) \iff there exist closed vector subspaces $H_0, H_1 \subset H$ such that $v|_{H_0^{\perp}} = 0$ and that $v|_{H_0}$ maps H_0 isometrically onto H_1 (in fact, $H_0 = (\text{Ker } v)^{\perp} = \text{Im } v^*$ and $H_1 = \text{Im } v = (\text{Ker } v^*)^{\perp}$). How does v^* act on H_1 and on $(H_1)^{\perp}$?

4.4. Let A be a C^* -algebra. Show that

(a) if $v \in A$ is a partial isometry, then $||v|| \in \{0, 1\}$;

(b) if $e \in \text{Idem } A$, then e is a projection iff $||e|| \in \{0, 1\}$.

4.5. Construct two similar idempotents in $M_2(\mathbb{C})$ which are not unitarily equivalent.

4.6. Given a *-algebra A, show that the Murray-von Neumann equivalence is an equivalence relation on Pr(A).

4.7. Given a *-algebra A and projections $p, q \in A$, show that p and q are Murray-von Neumann equivalent in A iff they are Murray-von Neumann equivalent in A_+ .

4.8. Let A be a unital C*-algebra, and let $p, q \in \Pr A$. We say that p and q are *unitopic* if there is a continuous path $t \mapsto u_t$ in U(A) such that $u_0 = 1$ and $u_1 p u_1^{-1} = q$. Show that

- (a) unitopy defines an equivalence relation on $\Pr A$;
- (b) if ||p-q|| < 1, then p and q are unitopic (and hence are unitarily equivalent);

(c) p and q are unitopic iff they are homotopic.

(*Hint:* reduce (b), (c) to similar statements about simeotopy, see the lectures.)

4.9. Show that a retract of a locally path connected topological space is locally path connected. Deduce that, for each C^* -algebra A, the spaces Pr(A) and (if A is unital) U(A) are locally path connected.

4.10. Let A be a unital C^{*}-algebra. Given an isometry $u \in A$, define a *-homomorphism $\alpha_u \colon A \to A$ by $\alpha_u(a) = uau^*$. Show that α_u induces the identity map on $K_0(A)$.

4.11. Construct a unital C^* -algebra A and a *-automorphism α of A such that $\alpha_* \colon K_0(A) \to K_0(A)$ is not the identity map.

4.12. Let *H* be an infinite-dimensional separable Hilbert space, and let $\mathcal{Q}(H) = \mathscr{B}(H)/\mathcal{K}(H)$ be the Calkin algebra. Show that $K_0(\mathcal{Q}(H)) = 0$.

Hint. Prove that every projection in $\mathcal{Q}(H)$ lifts to a projection in $\mathscr{B}(H)$. Towards this goal, lift a projection $p \in \mathcal{Q}(H)$ to a selfadjoint operator $T \in \mathscr{B}(H)$ and, by using the Hilbert-Schmidt decomposition of the compact selfadjoint operator $T - T^2$, construct explicitly a compact selfadjoint operator K on H such that T + K is a projection.

Let G be a group. A (full) group C^* -algebra of G is a unital C^* -algebra $C^*(G)$ together with a natural isomorphism

 $\operatorname{Hom}_{\mathsf{Un}.C^*-\mathsf{Alg}}(C^*(G),A) \cong \operatorname{Hom}_{\mathsf{Groups}}(G,\operatorname{U}(A))$

where Un.C^{*}-Alg is the category of unital C^{*}-algebras and Groups is the category of groups. More explicitly, $C^*(G)$ is equipped with a group homomorphism $i: G \to U(C^*(G))$ such that for each unital C^{*}-algebra A and each group homomorphism $\varphi: G \to U(A)$ there exists a unique unital *-homomorphism $\psi: C^*(G) \to A$ satisfying $\psi \circ i = \varphi$.

4.13. Let $\mathbb{C}G$ be the (algebraic) group algebra of G. For each $a \in \mathbb{C}G$, let

 $||a||_{\max} = \sup\{||\pi(a)|| : \pi \text{ is a } *-representation of } \mathbb{C}G\}$

Show that

(a) $||a||_{\max} < \infty$ for each $a \in \mathbb{C}G$;

(b) $\|\cdot\|_{\max}$ is a C^* -norm on $\mathbb{C}G$;

(c) for each C^* -seminorm p on $\mathbb{C}G$, we have $p \leq \|\cdot\|_{\max}$;

(d) $C^*(G)$ exists and is the completion of $\mathbb{C}G$ w.r.t. $\|\cdot\|_{\max}$.

4.14. Show that $C^*(\mathbb{Z}^n) \cong C(\mathbb{T}^n)$.

4.15. Let F_2 be the free group on two generators, and let u_1, u_2 denote the unitary elements of $C^*(F_2)$ corresponding to the free generators of F_2 . Let also v_1, v_2 denote the unitary elements of $C(S^1 \vee S^1)$ corresponding to the canonical maps $S^1 \vee S^1 \to S^1$. By the universal property of $C^*(F_2)$ (see above), there exists a unique *-homomorphism $\alpha \colon C^*(F_2) \to C(S^1 \vee S^1)$ such that $\alpha(u_i) = v_i$ (i = 1, 2).

(a) Show that $\alpha_* \colon K_0(C^*(\mathbb{F}_2)) \to K_0(C(S^1 \vee S^1))$ is an isomorphism.

(b) Calculate $K_0(C^*(\mathbf{F}_2))$. (You may use the fact that $K^0(S^1) \cong \mathbb{Z}$.)

Hints. Let $A = C^*(\mathbf{F}_2)$ and $B = C(S^1 \vee S^1)$.

- (i) Using Exercise 4.14, find a universal property of B in terms of v_1, v_2 .
- (ii) Show that there exists a *-homomorphism $\beta: B \to M_2(A)$ uniquely determined by $\beta(v_1) = u_1 \oplus 1$ and $\beta(v_2) = 1 \oplus u_2$.
- (iii) Let $\eta_A \colon \mathbb{C} \to A$ be the (unique) unital homomorphism from \mathbb{C} to A, and let $\varepsilon_A \colon A \to \mathbb{C}$ be the *-homomorphism uniquely determined by $u_i \mapsto 1$ (i = 1, 2). Construct an homotopy between $\beta \alpha$ and a *-homomorphism $\gamma \colon A \to M_2(A)$ such that, after identifying $K_0(M_2(A))$ with $K_0(A)$, we have $\gamma_* = \mathbf{1} + (\eta_A \varepsilon_A)_* \colon K_0(A) \to K_0(A)$.
- (iv) Denote the canonical extension of α to a map $M_2(A) \to M_2(B)$ by the same letter α . As in (ii), construct an homotopy between $\alpha\beta$ and a *-homomorphism $\delta \colon B \to M_2(B)$ such that $\delta_* = \mathbf{1} + (\eta_B \varepsilon_B)_* \colon K_0(B) \to K_0(B)$, where ε_B is defined similarly to ε_A (show that it exists).
- (v) Show that $\beta_* (\eta_A \varepsilon_B)_* \colon K_0(B) \to K_0(A)$ is inverse to α_* .