
18.04.2025 K-theory of C∗-algebras Exercise sheet 4

K0 for C∗-algebras. Projections and unitaries
(exercises for Lectures 12–13)

4.1. Let H be a Hilbert space, and let A be a ∗-subalgebra of B(H) containing 1H . Show that
(a) u ∈ A is an isometry (i.e., u∗u = 1) ⇐⇒ ∥u(x)∥ = ∥x∥ for all x ∈ H ⇐⇒ ⟨u(x) |u(y)⟩ = ⟨x | y⟩
for all x, y ∈ H;
(b) u ∈ A is unitary ⇐⇒ u is a surjective (or, equivalently, bijective) isometry;
(c) u ∈ A is a coisometry (i.e., uu∗ = 1) ⇐⇒ there exists a closed vector subspace H0 ⊂ H such
that u|H⊥

0
= 0 and that u|H0 maps H0 isometrically onto H (in fact, H0 = (Keru)⊥).

4.2. Let A be a unital C∗-algebra, A ̸= 0. Show that
(a) if u ∈ A is an isometry or a coisometry, then ∥u∥ = 1;
(b) if u ∈ A is unitary, then σ(u) ⊂ T (where T = {z ∈ C : |z| = 1});
(c) if u ∈ A is a noninvertible isometry or a noninvertible coisometry, then σ(u) = D̄ (where
D̄ = {z ∈ C : |z| 6 1}).

4.3. Let H be a Hilbert space, and let A be a ∗-subalgebra of B(H). Show that
(a) p ∈ A is a projection (i.e., p = p2 = p∗) ⇐⇒ there exists a closed vector subspace H0 ⊂ H
such that p|H0 = 1H0 and p|H⊥

0
= 0 (in fact, H0 = Im p = (Ker p)⊥);

(b) v ∈ A is a partial isometry (i.e., vv∗v = v) ⇐⇒ there exist closed vector subspaces H0, H1 ⊂ H
such that v|H⊥

0
= 0 and that v|H0 maps H0 isometrically onto H1 (in fact, H0 = (Ker v)⊥ = Im v∗

and H1 = Im v = (Ker v∗)⊥). How does v∗ act on H1 and on (H1)
⊥?

4.4. Let A be a C∗-algebra. Show that
(a) if v ∈ A is a partial isometry, then ∥v∥ ∈ {0, 1};
(b) if e ∈ IdemA, then e is a projection iff ∥e∥ ∈ {0, 1}.

4.5. Construct two similar idempotents in M2(C) which are not unitarily equivalent.

4.6. Given a ∗-algebra A, show that the Murray-von Neumann equivalence is an equivalence relation
on Pr(A).

4.7. Given a ∗-algebra A and projections p, q ∈ A, show that p and q are Murray-von Neumann
equivalent in A iff they are Murray-von Neumann equivalent in A+.

4.8. Let A be a unital C∗-algebra, and let p, q ∈ PrA. We say that p and q are unitopic if there is a
continuous path t 7→ ut in U(A) such that u0 = 1 and u1pu

−1
1 = q. Show that

(a) unitopy defines an equivalence relation on PrA;
(b) if ∥p− q∥ < 1, then p and q are unitopic (and hence are unitarily equivalent);
(c) p and q are unitopic iff they are homotopic.

(Hint: reduce (b), (c) to similar statements about simeotopy, see the lectures.)

4.9. Show that a retract of a locally path connected topological space is locally path connected.
Deduce that, for each C∗-algebra A, the spaces Pr(A) and (if A is unital) U(A) are locally path
connected.

4.10. Let A be a unital C∗-algebra. Given an isometry u ∈ A, define a ∗-homomorphism αu : A → A
by αu(a) = uau∗. Show that αu induces the identity map on K0(A).
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4.11. Construct a unital C∗-algebra A and a ∗-automorphism α of A such that α∗ : K0(A) → K0(A)
is not the identity map.

4.12. Let H be an infinite-dimensional separable Hilbert space, and let Q(H) = B(H)/K(H) be
the Calkin algebra. Show that K0(Q(H)) = 0.

Hint. Prove that every projection in Q(H) lifts to a projection in B(H). Towards this goal,
lift a projection p ∈ Q(H) to a selfadjoint operator T ∈ B(H) and, by using the Hilbert-Schmidt
decomposition of the compact selfadjoint operator T −T 2, construct explicitly a compact selfadjoint
operator K on H such that T +K is a projection.

Let G be a group. A (full) group C∗-algebra of G is a unital C∗-algebra C∗(G) together with a natural isomorphism

HomUn.C∗-Alg(C
∗(G), A) ∼= HomGroups(G,U(A))

where Un.C∗-Alg is the category of unital C∗-algebras and Groups is the category of groups. More explicitly, C∗(G)
is equipped with a group homomorphism i : G → U(C∗(G)) such that for each unital C∗-algebra A and each group
homomorphism φ : G→ U(A) there exists a unique unital ∗-homomorphism ψ : C∗(G) → A satisfying ψ ◦ i = φ.

4.13. Let CG be the (algebraic) group algebra of G. For each a ∈ CG, let

∥a∥max = sup
{
∥π(a)∥ : π is a ∗-representation of CG

}
Show that
(a) ∥a∥max < ∞ for each a ∈ CG;
(b) ∥ · ∥max is a C∗-norm on CG;
(c) for each C∗-seminorm p on CG, we have p 6 ∥ · ∥max;
(d) C∗(G) exists and is the completion of CG w.r.t. ∥ · ∥max.

4.14. Show that C∗(Zn) ∼= C(Tn).

4.15. Let F2 be the free group on two generators, and let u1, u2 denote the unitary elements of
C∗(F2) corresponding to the free generators of F2. Let also v1, v2 denote the unitary elements of
C(S1 ∨S1) corresponding to the canonical maps S1 ∨S1 → S1. By the universal property of C∗(F2)
(see above), there exists a unique ∗-homomorphism α : C∗(F2) → C(S1 ∨ S1) such that α(ui) = vi
(i = 1, 2).
(a) Show that α∗ : K0(C

∗(F2)) → K0(C(S1 ∨ S1)) is an isomorphism.
(b) Calculate K0(C

∗(F2)). (You may use the fact that K0(S1) ∼= Z.)
Hints. Let A = C∗(F2) and B = C(S1 ∨ S1).
(i) Using Exercise 4.14, find a universal property of B in terms of v1, v2.
(ii) Show that there exists a ∗-homomorphism β : B → M2(A) uniquely determined by β(v1) =

u1 ⊕ 1 and β(v2) = 1⊕ u2.
(iii) Let ηA : C → A be the (unique) unital homomorphism from C to A, and let εA : A → C be the

∗-homomorphism uniquely determined by ui 7→ 1 (i = 1, 2). Construct an homotopy between
βα and a ∗-homomorphism γ : A → M2(A) such that, after identifying K0(M2(A)) with K0(A),
we have γ∗ = 1+ (ηAεA)∗ : K0(A) → K0(A).

(iv) Denote the canonical extension of α to a map M2(A) → M2(B) by the same letter α. As in
(ii), construct an homotopy between αβ and a ∗-homomorphism δ : B → M2(B) such that
δ∗ = 1+ (ηBεB)∗ : K0(B) → K0(B), where εB is defined similarly to εA (show that it exists).

(v) Show that β∗ − (ηAεB)∗ : K0(B) → K0(A) is inverse to α∗.
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