K_0 for Banach algebras. Homotopy invariance

(EXERCISES FOR LECTURES 11–12)

3.1. Let A be a unital Banach algebra, and let $e, f \in \text{Idem } A$. We say that e and f are simeotopic if there is a continuous path $t \mapsto u_t$ in A^{\times} such that $u_0 = 1$ and $u_1 e u_1^{-1} = f$. Show that simeotopy defines an equivalence relation on Idem A. (In fact, this relation is equivalent to homotopy, see the lectures.)

3.2. Let A be a Banach algebra. Show that Idem A is locally path connected (i.e., for each $e \in \text{Idem } A$ and each open neighborhood U of e there is a path connected open neighborhood V of e such that $V \subset U$).

3.3. Let A be a unital Banach algebra, and let $x, y \in A^{\times}$. Show that $x \oplus y$ and $y \oplus x$ are homotopic in $GL_2(A)$. (This is a part of Whitehead's lemma, see the lectures.)

3.4. Let A be a separable Banach algebra. Show that $K_0(A)$ is at most countable.

3.5. Let A and B be Banach algebras, and let Hom(A, B) denote the set of continuous homomorphisms from A to B equipped with the topology of pointwise convergence (i.e., the topology induced from B^A).

(a) Construct a natural bijection

$$Hom(A, C([0, 1], B)) \cong C([0, 1], Hom(A, B)).$$

(b) Given $\varphi_0, \varphi_1 \in \text{Hom}(A, B)$, show that φ_0 and φ_1 are homotopic as Banach algebra homomorphisms (i.e., there exists a continuous homomorphism $\Phi: A \to C([0, 1], B)$ such that $ev_k \circ \Phi = \varphi_k$ for k = 0, 1) if and only if they are homotopic as elements of Hom(A, B) (i.e., belong to the same path connected component of Hom(A, B)).

3.6. Let X and Y be compact Hausdorff topological spaces, $f_0, f_1: X \to Y$ be continuous maps, and $f_0^{\bullet}, f_1^{\bullet}: C(Y) \to C(X)$ be the homomorphisms induced by f_0 and f_1 . Show that

(a) f_0 and f_1 are homotopic (as continuous maps) iff f_0^{\bullet} and f_1^{\bullet} are homotopic as Banach algebra homomorphisms;

(b) f_0 is a homotopy equivalence iff f_0^{\bullet} is a homotopy equivalence.

3.7. Let X be a compact Hausdorff topological space, and let $x_0 \in X$. When is $C_0(X \setminus \{x_0\})$ contractible? Give a criterion entirely in terms of X and x_0 .

3.8. Given a compact Hausdorff topological space X, let $\operatorname{cone}(X)$ denote the (topological) cone over X, i.e., the space obtained from $X \times [0, 1]$ by collapsing $X \times \{0\}$ to a point (which will be denoted by v_0). Construct a C^{*}-algebra isomorphism between the cone over C(X) and $C_0(\operatorname{cone}(X) \setminus \{v_0\})$.

Given a Banach algebra A, the suspension over A is $SA = C_0((0,1), A)$ (or, equivalently, $C_0(\mathbb{R}, A)$). Given a Banach algebra homomorphism $\varphi \colon A \to B$, the mapping cylinder and the mapping cone of φ are defined, respectively, by

$$Z_{\varphi} = \big\{ (a, f) \in A \oplus C([0, 1], B) : \varphi(a) = f(1) \big\}, \qquad C_{\varphi} = \big\{ (a, f) \in A \oplus C_0((0, 1], B) : \varphi(a) = f(1) \big\}.$$

3.9. Given a compact Hausdorff topological space X, interpret the suspension over C(X) in terms of the (topological) suspension $\Sigma X = \operatorname{cone}(X)/(X \times \{1\})$.

3.10. Let X and Y be compact Hausdorff topological spaces, $f: X \to Y$ be a continuous map, and $\varphi = f^{\bullet}: C(Y) \to C(X)$ be the homomorphism induced by f. Interpret Z_{φ} and C_{φ} in terms of the (topological) mapping cylinder and the mapping cone defined, respectively, by

$$\operatorname{cyl}(f) = (X \times [0, 1]) \cup_g Y, \quad \operatorname{cone}(f) = \operatorname{cone}(X) \cup_g Y,$$

where $g: X \times \{1\} \to Y$ is given by g(x, 1) = f(x).

3.11. Given a Banach algebra A, determine the mapping cylinder and the mapping cone of the homomorphisms $\mathbf{1}_A \colon A \to A$ and $0 \to A$ (i.e., characterize them in terms of some standard constructions applied to A).

3.12. Show that a Banach algebra homomorphism $\varphi \colon A \to B$ is homotopic to the zero map iff it lifts to CB (i.e., there exists a continuous homomorphism $\Phi \colon A \to CB$ such that $ev_1 \circ \Phi = \varphi$).

3.13. Let $\varphi \colon A \to B$ be a Banach algebra homomorphism, and let p denote the projection of C_{φ} onto A (i.e., p(a, f) = a for all $(a, f) \in C_{\varphi}$). Show that

- (a) A is homotopy equivalent to Z_{φ} ;
- (b) the sequence $K_0(C_{\varphi}) \xrightarrow{p_*} K_0(A) \xrightarrow{\varphi_*} K_0(B)$ is exact.

3.14. Let $\varphi \colon A \to B$ be a surjective C^* -algebra homomorphism, and let $I = \text{Ker } \varphi$. Construct an isomorphism $K_0(I) \cong K_0(C_{\varphi})$.

Hint. Use an embedding $\beta: I \hookrightarrow C_{\varphi}$, show that C_{φ}/I is contractible, and construct an extension $D \hookrightarrow C_{\beta} \to E$ such that D and E are contractible.