
14.03.2025 K-theory of C∗-algebras Exercise sheet 1

K0 for unital rings
(exercises for Lectures 7–9)

1.1. Let S be an abelian semigroup. Verify the details of the construction of the Grothendieck group
Gr(S) given at the lecture. Specifically, show that
(a) the following two definitions yield the same equivalence relation on S × S:

(1) (x1, y1) ∼ (x2, y2) iff (x1 + z1, y1 + z1) = (x2 + z2, y2 + z2) for some z1, z2 ∈ S;
(2) (x1, y1) ∼ (x2, y2) iff x1 + y2 + z = x2 + y1 + z for some z ∈ S;

(b) the quotientG = (S×S)/ ∼ becomes an abelian group under the operation [(x1, y1)]+[(x2, y2)] =
[(x1 + x2, y1 + y2)] (where [(x, y)] stands for the equivalence class of (x, y) ∈ S × S);
(c) the map i : S → G given by i(x) = [(x + x, x)] is a semigroup homomorphism, and it has the
universal property that, for each abelian group H and each semigroup homomorphism f : S → H,
there is a unique group homomorphism g : G → H such that g ◦ i = f ;
(d) for all x, y ∈ S we have [(x, y)] = i(x)− i(y);
(e) given x, y ∈ S, we have i(x) = i(y) iff x+ z = y + z for some z ∈ R.

1.2. Let S1 and S2 be abelian semigroups. Show that the projections pk : S1 × S2 → Sk (k = 1, 2)
induce a group isomorphism Gr(S1 × S2)

∼−→ Gr(S1)×Gr(S2) given by a 7→ (p1,∗(a), p2,∗(a)).

1.3. Calculate Gr(S) for the following semigroups S (in particular, describe the canonical map
i : S → Gr(S) explicitly): (a) S = Z>0; (b) S = Z>1; (c) S = Z>2; (d) S = (Z \ {0}, ·);
(e) S = Z>0 ∪ {∞} with operation + extended to S from Z>0 by n + ∞ = ∞ for all n;
(f) S = {0, x, 2x, . . . , (n− 1)x} with obvious operation + and relation nx = x.

1.4. Let F be a free finitely generated module over a unital ring. Show that each basis of F is finite.

1.5. Show that a finitely generated abelian group is a projective Z-module iff it is free.

1.6. Let R1 and R2 be unital rings.
(a) Show that the projections pk : R1 × R2 → Rk (k = 1, 2) induce a semigroup isomorphism
V(R1 ×R2)

∼−→ V(R1)× V(R2) given by s 7→ (p1,∗(s), p2,∗(s)).
(b) Construct a similar isomorphism K0(R1 ×R2)

∼−→ K0(R1)×K0(R2).

1.7. LetR be a unital ring, and letR-fgp (respectively, fgp-R) denote the category of left (respectively,
right) finitely generated projective R-modules.
(a) Show that the functor HomR(−, R) is an equivalence between R-fgp and (fgp-R)op.
(b) Deduce that V(R) ∼= V(Rop).

1.8. Let R be a unital ring, and let S be the semigroup of isomorphism classes of countably generated
projective R-modules. Show that Gr(S) = 0.

1.9 (A geometric model for equivalence of idempotents). Let R be a subring of Endk(V ), where V is
a vector space over a field k. Suppose e, f are idempotents of R, and let V1 = Im(e), V2 = Ker(e),
W1 = Im(f), W2 = Ker(f) (thus we have direct sum decompositions V = V1 ⊕ V2 = W1 ⊕ W2).
Given a, b ∈ R, show that
(a) the pair (a, b) implements an equivalence between e and f (i.e., ab = e, ba = f) if and only if
the following conditions hold:

b(V1) = W1, a(W1) = V1, ab|V1 = 1V1 , ba|W1 = 1W1 , (1)

b(V2) ⊂ Ker(a), a(W2) ⊂ Ker(b). (2)
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(b) the pair (a, b) implements an equivalence between e and f (i.e., ab = e, ba = f) and is reduced
(i.e., ea = a = af , fb = b = be) if and only if it satisfies (1) and b(V2) = a(W2) = 0.
(c) Assuming that R = Endk(V ), show that e ∼a f iff dim Im(e) = dim Im(f).

1.10. Let e, f be idempotents in a ring R.
(a) Suppose that ef = fe = 0 (in this case, we say that e and f are orthogonal and write e ⊥ f).
Show that e+ f is an idempotent.
(b) Conversely, assume that R is a k-algebra (where char k ̸= 2) and that e + f is an idempotent.
Show that e ⊥ f .

1.11. Let R be a ring, and let M be an R-module. Suppose that p, q are idempotent endomorphisms
of M such that p ⊥ q. Show that Im(p+ q) = Im(p)⊕ Im(q).

1.12. Given a unital ring R, let Ṽ(R) denote the set of equivalence classes of idempotents in M∞(R).
Each unital ring homomorphism φ : R → S extends to a homomorphism M∞(R) → M∞(S), (aij) 7→
(φ(aij)), which preserves equivalence of idempotents and hence induces a map Ṽ(R) → Ṽ(S). Thus
Ṽ(R) becomes a functor on the category of unital rings. Show that the isomorphism Ṽ(R) ∼−→ V(R),
[e] 7→ [R∞e] (see the lecture) is natural in R.

1.13. Let R be a unital ring, and let Ṽ(R) be as in the previous exercise. Consider the commutative
diagram

V(R) // V(Rop)

Ṽ(R)

OO

// Ṽ(Rop)

OO

where the upper horizontal arrow is the isomorphism described in Exercise 1.7, and the vertical
arrows are the natural isomorphisms described in the previous exercise. Explain (entirely in terms
of matrices) how the lower horizontal arrow acts.

1.14. Calculate K0(R) for the following rings:
(a) R = Z/6Z; (b) R = Z/4Z; (c) R = k[ε]/(ε2) (k = a field).

(Hint to (b,c): there is an ideal I ⊂ R such that I2 = 0 and R/I is a field.)

1.15. Let R be a commutative unital ring. Show that, if P and Q are finitely generated projective
R-modules, then so is P ⊗R Q. Deduce that the tensor product operation makes K0(R) into a
commutative unital ring.

1.16 (Leavitt algebra). Let k be a field. Given an integer n > 2, let R be the unital k-algebra
generated by 2n elements x1, . . . , xn, y1, . . . , yn with relations

x1y1 + · · · xnyn = 1, yixj = δij1 (i, j = 1, . . . , n). (3)

(a) Let V be a k-vector space of countable dimension. Show that there exist linear operators
x1, . . . , xn, y1, . . . , yn on V satisfying (3). This implies, in particular, that R ̸= 0. (Hint: use a
decomposition V = V1 ⊕ · · · ⊕ Vn with Vi

∼= V .)
(b) Show that R ∼= Rn as R-modules. Deduce that K0(R) has torsion.

Remark 1.1. In fact, R is simple, so it is isomorphic to the subalgebra of Endk(V ) generated by
the operators from (a). Also, K0(R) ∼= Z/(n− 1)Z (both facts are nontrivial).
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