Harmonic analysis on locally compact abelian groups

(EXERCISES FOR LECTURES 13, 15, 16)

Convention. Throughout, all locally compact groups are assumed to be second countable.

9.1. Let G be a nondiscrete locally compact abelian group. Prove that the embedding of G into Max M(G) given by $\chi \mapsto \tilde{\chi}$, where $\tilde{\chi}(\nu) = \hat{\nu}(\chi)$ (cf. Exercise 6.18 (b)), is not onto.

- **9.2.** Let G be a locally compact abelian group. Show that
- (a) G is compact iff G is discrete;
- (b) G is discrete iff \widehat{G} is compact.

9.3. Construct an isomorphism between $\widehat{\mathbb{Z}}_p$ (see Exercise 4.11) and a certain subgroup of \mathbb{T} . Is the canonical topology on $\widehat{\mathbb{Z}}_p$ the same as the topology induced from \mathbb{T} ?

9.4. (a) Given $x = \sum_k a_k p^k \in \mathbb{Q}_p$ (see Exercise 4.11), let $\lambda(x) = \sum_{k < 0} a_k p^k \in \mathbb{Q}$. Define a character $\chi_x : \mathbb{Q}_p \to \mathbb{T}$ by $\chi_x(y) = e^{2\pi i \lambda(xy)}$. Show that χ_x is continuous, and that the map $\mathbb{Q}_p \to \widehat{\mathbb{Q}}_p$, $x \mapsto \chi_x$, is a topological isomorphism.

(b) Let μ denote the Haar measure on \mathbb{Q}_p normalized in such a way that $\mu(\mathbb{Z}_p) = 1$ (see Exercise 4.12). Identify $\widehat{\mathbb{Q}}_p$ with \mathbb{Q}_p , as in (a). Find the respective Plancherel measure on \mathbb{Q}_p .

9.5. Let G be a compact abelian group equipped with the normalized Haar measure (i.e., the measure of G is 1). Show that the Plancherel measure on \hat{G} is the counting measure.

9.6. Let (G_i) be a family of compact abelian groups. Construct a topological isomorphism $(\prod G_i)^{\widehat{}} \cong \bigoplus \widehat{G}_i$ (where $\bigoplus \widehat{G}_i$ is equipped with the discrete topology).

9.7. Let $G = \mathbb{Q}/\mathbb{Z}$ equipped with the discrete topology. Construct a topological isomorphism between \widehat{G} and $\prod_p \mathbb{Z}_p$.

A topological space X is *totally disconnected* if each nonempty connected subset of X is a singleton. (Standard examples: discrete spaces; \mathbb{Q} ; the Cantor set and (more generally) arbitrary products of discrete spaces; \mathbb{Z}_p and \mathbb{Q}_p .) It is known that a locally compact Hausdorff space X is totally disconnected iff the topology on X has a base consisting of clopen (i.e., closed and open) sets. You may use this fact below.

9.8. Let G be a compact abelian group. Show that

- (a) G is connected iff \widehat{G} is torsion-free (i.e., the only element of finite order in \widehat{G} is the identity).
- (b) *G* is totally disconnected iff \widehat{G} is a torsion group (i.e., all elements of \widehat{G} are of finite order). (*Hint to* (b): if *G* is totally disconnected, then Ker χ is clopen in *G* for every $\chi \in \widehat{G}$.)

9.9. Let G be a compact abelian group equipped with the normalized Haar measure. Show that \widehat{G} is a total subset of C(G) and an orthonormal basis of $L^2(G)$.

9.10. Let G be a locally compact abelian group such that the Fourier transform $\mathscr{F}: L^1(G) \to C_0(\widehat{G})$ is surjective. Prove that G is finite. (*Hint:* look at \mathscr{F}^* .)

9.11^{*}. Show that the characteristic function of $\mathbb{N} \subset \mathbb{Z}$ does not belong to the Fourier-Stieltjes algebra $B(\mathbb{Z})$. Thus the Fourier transform $\mathscr{F}: M(\mathbb{T}) \to C_b(\mathbb{Z})$ is not surjective.

9.12. Let G be a locally compact group, and let $f \in L^1(G)$, $g \in L^2(G)$. Show that

- (a) the convolution f * g is defined a.e. on G, belongs to $L^2(G)$, and $||f * g||_2 \leq ||f||_1 ||g||_2$;
- (b) If G is abelian, then $(f * g)^{\hat{}} = \hat{f}\hat{g}$.

9.13. Let G be a locally compact abelian group. Show that

(a) if $f, g \in L^2(G)$, then $(fg)^{\widehat{}} = \hat{f} * \hat{g}$;

(b) $A(G) = L^2(G) * L^2(G)$ (where A(G) is the Fourier algebra of G).

9.14. Let G be a locally compact abelian group, and let $B^1(G) = B(G) \cap L^1(G)$. Show that $B^1(G)$ is an algebra under convolution and under pointwise multiplication.

Definition 9.1. Let G be a locally compact group. The *(full)* C^{*}-algebra of G, C^{*}(G), is defined to be the C^{*}-envelope of $L^1(G)$ (see Definition 8.1). The reduced C^{*}-algebra of G is the C^{*}-subalgebra $C_r^*(G)$ of $\mathscr{B}(L^2(G))$ generated by the image of the left regular representation $\lambda \colon L^1(G) \to \mathscr{B}(L^2(G))$, $\lambda(f)g = f * g$ (see Exercise 9.12 (a)).

The universal property of $C^*(G)$ yields a canonical *-homomorphism $C^*(G) \to C^*_r(G)$.

9.15. Prove that, if G is abelian, then the canonical map $C^*(G) \to C^*_r(G)$ is an isomorphism.

9.16. Define covariant functors $G \mapsto M(G)$ and $G \mapsto C_b(\widehat{G})$ from the category of locally compact abelian groups to the category of unital Banach *-algebras. Show that the Fourier transform is a natural transformation between them.

9.17. Let G be a locally compact abelian group. Given a closed subgroup $H \subset G$, define the annihilator of H by $H^{\perp} = \{\chi \in \widehat{G} : \chi | H = 1\}$.

(a) Show that $H^{\perp\perp} = H$ (here $\widehat{\widehat{G}}$ is canonically identified with G).

(b) Construct topological isomorphisms $\widehat{G}/\widehat{H} \cong H^{\perp}, \ \widehat{H} \cong \widehat{G}/H^{\perp}$.

(c) A short exact sequence $1 \to G' \xrightarrow{i} G \xrightarrow{p} G'' \to 1$ of locally compact abelian groups is *strictly* exact if *i* is a topological embedding and *p* is a quotient map. Show that a sequence of the above form is strictly exact iff the dual sequence is strictly exact.