Positive definite functions and positive functionals

(EXERCISES FOR LECTURES 14–15)

Convention. Throughout, all locally compact groups are assumed to be second countable.

8.1. Let G be a finite abelian group. Recall (see Lecture 1) that the dual group \widehat{G} is a vector space basis of the space Fun(G) of all functions on G. Without using the Fourier transform, show that a function $\varphi = \sum_{\chi \in \widehat{G}} c_{\chi} \chi$ is positive definite iff $c_{\chi} \ge 0$ for all χ .

8.2. Let G be a locally compact group, and let $\mathscr{P}(G)$ be the set of all continuous, positive definite functions on G. Show that

(a) If $\varphi \in \mathscr{P}(G)$ and $\chi \colon G \to \mathbb{T}$ is a continuous character, then $\chi \varphi \in \mathscr{P}(G)$;

(b) If G is abelian and $\varphi, \psi \in \mathscr{P}(G)$, then $\varphi \psi \in \mathscr{P}(G)$.

8.3. Let G be a group, and let π be a unitary representation of G on a Hilbert space H. Show that, for every $v \in H$, the function $\varphi(x) = \langle \pi(x)v | v \rangle$ is positive definite.

8.4. Let G be a locally compact group, and let $f, g \in L^2(G)$. Show that (a) the convolution f * Sg (where $(Sg)(x) = g(x^{-1})$) is defined everywhere on G, belongs to $C_0(G)$, and satisfies $||f * Sg||_{\infty} \leq ||f||_2 ||g||_2$; (b) $f * \overline{Sf}$ is positive definite.

8.5. Let A be a commutative Banach *-algebra, $\operatorname{Max}_h(A) \subset \operatorname{Max}(A)$ be the set of all maximal modular *-ideals of A, and $\hat{A}_h \subset \hat{A}$ be the set of all nonzero *-characters of A. Show that (a) the map $\hat{A}_h \to \operatorname{Max}_h(A)$, $\chi \mapsto \operatorname{Ker} \chi$, is a bijection;

(b) \hat{A}_h is closed in \hat{A} .

8.6 (another generalization of Bochner's theorem). Let A be a commutative Banach *-algebra with a bounded approximate identity. Denote by $\Gamma_h: A \to C_0(\hat{A}_h)$ the composition of the Gelfand transform $\Gamma: A \to C_0(\hat{A})$ with the restriction map $C_0(\hat{A}) \to C_0(\hat{A}_h)$. Show that the dual map Γ_h^* maps the set $M(\hat{A}_h)_{\text{pos}}$ of finite positive Radon measures on \hat{A}_h bijectively onto the set A_{pos}^* of positive functionals on A. (*Hint:* for a hermitian A, see the lectures.)

8.7 (GNS construction¹ for untopologized groups). Let G be a group, let φ be a positive definite function on G, and let α_{φ} denote the respective positive linear functional on the group algebra $\mathbb{C}G$ given by $\alpha_{\varphi}(\delta_x) = \varphi(x)$ ($x \in G$). Define a semi-inner product on $\mathbb{C}G$ by $\langle f | g \rangle_{\varphi} = \alpha_{\varphi}(g^*f)$. Let $N_{\varphi} = \{f \in \mathbb{C}G : \langle f | f \rangle_{\varphi} = 0\}$, and let H_{φ} denote the Hilbert space completion of $\mathbb{C}G/N_{\varphi}$ w.r.t. the inner product induced by $\langle - | - \rangle_{\varphi}$.

(a) Show that there exists a unitary representation π_{φ} of G on H_{φ} uniquely determined by $\pi_{\varphi}(x)(\delta_y + N_{\varphi}) = \delta_{xy} + N_{\varphi}$ $(x, y \in G)$.

(b) Show that there exists $v \in H_{\varphi}$ such that $\varphi(x) = \langle \pi_{\varphi}(x)v | v \rangle$ for all $x \in G$. (Thus every positive definite function on G has the form described in Exercise 8.3.)

8.8 (GNS construction for unital Banach *-algebras). Let A be a unital Banach *-algebra, and let ω be a positive linear functional on A.

(a) Show that for every selfadjoint element $a \in A$ with ||a|| < 1 there exists a selfadjoint element $b \in A$ such that $b^2 = 1 - a$. (*Hint:* use the Taylor series for $\sqrt{1-z}$.)

- (b) Show that ω is continuous and satisfies $\|\omega\| = \omega(1)$. (*Hint*: use (a).)
- (c) Show that for all $a, b \in A$ we have $|\omega(b^*ab)| \leq ||a||\omega(b^*b)$. (*Hint*: use (b).)

¹GNS is for Gelfand, Naimark, and Segal.

(d) Define a semi-inner product on A by $\langle a | b \rangle_{\omega} = \omega(b^*a)$. Let $N_{\omega} = \{a \in A : \langle a | a \rangle_{\omega} = 0\}$, and let H_{ω} denote the Hilbert space completion of A/N_{ω} w.r.t. the inner product induced by $\langle - | - \rangle_{\omega}$. Show that there exists a *-representation π_{ω} of A on H_{ω} uniquely determined by $\pi_{\omega}(a)(b + N_{\omega}) = ab + N_{\omega}$ $(a, b \in A)$. (*Hint*: use (c).)

(e) Show that there exists $v \in H_{\omega}$ such that $\omega(a) = \langle \pi_{\omega}(a)v | v \rangle$ for all $a \in A$.

8.9 (GNS construction for nonunital Banach *-algebras). Let A be a unital Banach *-algebra, and let ω be a positive linear functional on A.

(a) Show that Part (d) of Exercise 8.8 holds even if A is not assumed to be unital. (*Hint:* for every $b \in A$, the map $a \mapsto \omega(b^*ab)$ is a positive functional on A_+ .)

From now on, we assume that A has a bounded approximate identity and that ω is continuous¹.

(b) Show that $\omega(a^*) = \overline{\omega(a)}$ and that there exists C > 0 such that $|\omega(a)|^2 \leq C ||a^*a||$ $(a \in A)$.

(c) Extend ω to a linear functional ω_+ on A_+ by letting $\omega_+(1_+) = C$, where C is as in (b). Show that ω_+ is positive.

(d) Show that the inclusion of A into A_+ induces an isometric isomorphism between H_{ω} and H_{ω_+} . Thus the restriction of π_{ω_+} to A can be identified with π_{ω} .

(e) Show that Part (e) of Exercise 8.8 holds even if A is not assumed to be unital.

8.10 (*GNS construction for locally compact groups*). Let *G* be a locally compact group, let φ be a function of positive type on *G*, and let α_{φ} denote the respective positive linear functional on $L^1(G)$ given by $\alpha_{\varphi}(f) = \int_G f \varphi \, d\mu$ (where μ is a fixed Haar measure). Let $H_{\varphi} = H_{\alpha_{\varphi}}$, and let $\pi_{\varphi} = \pi_{\alpha_{\varphi}}$ denote the respective GNS representation of $L^1(G)$ on H_{φ} (see Exercise 8.9).

(a) Show that there exists a unitary representation π_{φ} of G on H_{φ} uniquely determined by $\pi_{\varphi}(x)(f + N_{\varphi}) = L_x f + N_{\varphi}$ ($x \in G, f \in L^1(G)$). Moreover, π_{φ} is continuous in the sense that, for every $h \in H_{\varphi}$, the map $G \to H_{\varphi}, x \mapsto \pi_{\varphi}(x)h$, is continuous.

(b) Show that there exists $v \in H_{\varphi}$ such that $\varphi(x) = \langle \pi_{\varphi}(x)v | v \rangle$ for almost all $x \in G$. (In particular, every function of positive type on G is a.e. equal to a unique continuous, positive definite function.)

Definition 8.1. Let A be a Banach *-algebra. A C^* -envelope of A is a pair $(C^*(A), \theta_A)$ consisting of a C^* -algebra $C^*(A)$ and a *-homomorphism $\theta_A \colon A \to C^*(A)$ such that for each C^* -algebra B and each *-homomorphism $\varphi \colon A \to B$ there exists a unique *-homomorphism $\psi \colon C^*(A) \to B$ satisfying $\psi \circ \theta_A = \varphi$.

Clearly, if $C^*(A)$ exists, then it is unique up to a unique (necessarily isometric) *-isomorphism over A. The next exercise shows that $C^*(A)$ always exists.

8.11. Let A be a Banach *-algebra. Show that there exists a largest C*-seminorm $\|\cdot\|_*$ on A, and that the completion of $A/\{a: \|a\|_* = 0\}$ w.r.t. the respective quotient norm is a C*-envelope of A.

8.12. Let A be a commutative Banach *-algebra. Show that $(C_0(A_h), \Gamma_h)$ (see Exercise 8.6) is a C^* -envelope of A.

8.13. Find the C^{*}-envelope of (a) $C^n[a,b]$; (b) $\mathscr{A}(\overline{\mathbb{D}})$; (c) $C_0(X)_{\sigma}$ (see Exercise 7.8).

8.14 (yet another generalization of Bochner's theorem). Let A be a Banach *-algebra with a bounded approximate identity. Show that θ_A^* maps $C^*(A)_{\text{pos}}^*$ bijectively onto A_{pos}^* .

(*Hint:* the problem of extending a positive functional on A to a positive functional on $C^*(A)$ reduces to the universal property of $C^*(A)$ via the GNS construction.)

Note that Exercise 8.14 implies Exercise 8.6 modulo Exercise 8.12.

¹In fact, a positive functional on a Banach *-algebra with a bounded approximate identity is automatically continuous. The proof is based on a nontrivial factorization theorem due to Cohen.