C^* -algebras and hermitian *-algebras

(EXERCISES FOR LECTURES 11-12)

7.1. Let X be a locally compact Hausdorff topological space, and let X_+ denote the one-point compactification of X. For each $f \in C_0(X)$, define $f_+: X_+ \to \mathbb{C}$ by $f_+(x) = f(x)$ for $x \in X$ and $f_+(\infty) = 0$. Prove that f_+ is continuous, and that the map $C_0(X)_+ \to C(X_+)$, $f + \lambda 1_+ \mapsto f_+ + \lambda$, is an isometric *-isomorphism. (Here we assume that $C_0(X)_+$ is equipped with the canonical C^* -norm extending the supremum norm on $C_0(X)$.)

7.2. Let A denote any of the following algebras: (a) $C^1[a, b]$; (b) $\mathscr{A}(\overline{\mathbb{D}})$; (c) $\ell^1(\mathbb{Z})$; (d) $L^1(\mathbb{T})$; (e) $L^1(\mathbb{R})$. Does there exist a norm and an involution on A making it into a C^* -algebra? (We do not assume that the new norm is equivalent to the original norm.)

7.3. Let A and B be C^* -algebras. Show that if B is commutative, then each homomorphism from A to B is a *-homomorphism. Does the above result hold without the commutativity assumption?

7.4. Let $A = C^{1}[0, 1]$. (a) Is A hermitian? (b) Does the identity ||a|| = r(a) hold in A?

7.5. Let $A = \mathscr{A}(\overline{\mathbb{D}})$. (a) Is A hermitian? (b) Does the identity ||a|| = r(a) hold in A?

7.6. Let $A = \ell^1(\mathbb{Z})$. (a) Is A hermitian? (b) Does the identity ||a|| = r(a) hold in A?

7.7. Let $A = \mathscr{A}^+(\overline{\mathbb{D}})$ consist of those $f \in \mathscr{A}(\overline{\mathbb{D}})$ for which $\sum_n |c_n(f)| < \infty$, where $c_n(f)$ is the *n*th Taylor coefficient of f at 0.

- (a) Show that A is a *-subalgebra of $\mathscr{A}(\mathbb{D})$.
- (b)* Prove that $A \neq \mathscr{A}(\overline{\mathbb{D}})$.

(c) Show that A is a Banach *-algebra w.r.t. the norm $||f|| = \sum_{n \ge 0} |c_n(f)|$.

(d) Is A hermitian? (e) Does the identity ||a|| = r(a) hold in \hat{A} ?

7.8. Let X be a locally compact Hausdorff topological space, and let $\sigma: X \to X$ be a continuous map such that $\sigma^2 = \mathbf{1}$. Define an involution on $C_0(X)$ by $f^*(x) = \overline{f(\sigma(x))}$ $(x \in X)$. The resulting Banach *-algebra will be denoted by $C_0(X)_{\sigma}$.

- (a) Describe all *-characters of $C_0(X)_{\sigma}$.
- (b) When is $C_0(X)_{\sigma}$ hermitian?

7.9 (*Beurling algebras*). Let $\omega = (\omega_n)_{n \in \mathbb{Z}}$ be a sequence of positive numbers such that $\omega_0 = 1$ and $\omega_{m+n} \leq \omega_m \omega_n$ for all $m, n \in \mathbb{Z}$. (Such an ω is called a *weight* on \mathbb{Z} .)

- (a) Show that the limit $\lim_{n \to +\infty} \omega_n^{1/n}$ exists and is equal to $\inf_{n \ge 1} \omega_n^{1/n}$.
- (b) Let

$$\ell^{1}(\mathbb{Z},\omega) = \Big\{ f \colon \mathbb{Z} \to \mathbb{C} : \|f\| = \sum_{n \in \mathbb{Z}} |f(n)|\omega_{n} < \infty \Big\}.$$

Show that $\ell^1(\mathbb{Z}, \omega)$ is a commutative unital Banach algebra under convolution.

(c) Show that the maximal spectrum of $\ell^1(\mathbb{Z}, \omega)$ is homeomorphic to the annulus $K_{r,R} = \{z \in \mathbb{C} : r < |z| < R\}$ via the map $\chi \mapsto \chi(\delta_1)$, where δ_1 is the function on \mathbb{Z} that is 1 at 1, 0 elsewhere. Give explicit formulas for r and R in terms of ω .

(d) Give a condition on ω that is necessary and sufficient for $\ell^1(\mathbb{Z}, \omega)$ to be a Banach *-algebra w.r.t. the involution $f^*(n) = \overline{f(-n)}$.

- (e) Under Condition (d), characterize those $x \in K_{r,R}$ which correspond to *-characters.
- (f) When is $\ell^1(\mathbb{Z}, \omega)$ hermitian?

7.10. Let A be a unital Banach *-algebra, and let $B \subset A$ be a closed *-subalgebra containing the identity of A.

- (a) Show that, if B is hermitian, then it is spectrally invariant in A.
- (b) Does (a) hold if we drop the assumption that B is hermitian?
- (c) Show that, if B is hermitian, then the induced map $Max A \to Max B$ is onto.
- (d) Does (c) hold if we drop the assumption that B is hermitian?

7.11. Let $\varphi: A \to B$ be a surjective *-homomorphism of C*-algebras. Is it true that

- (a) for each selfadjoint $b \in B$ there exists a selfadjoint $a \in A$ with $\varphi(a) = b$?
- (b) for each unitary $b \in B$ there exists a unitary $a \in A$ with $\varphi(a) = b$?

7.12. Let H be a Hilbert space. Show that

- (a) $T \in \mathscr{B}(H)$ is selfadjoint $\iff \langle Tx | x \rangle \in \mathbb{R}$ for all $x \in H$;
- (b) $P \in \mathscr{B}(H)$ is an orthogonal projection onto a closed subspace of $H \iff P = P^* = P^2$;
- (c) $T \in \mathscr{B}(H)$ is an isometry (i.e., ||Tx|| = ||x|| for all $x \in H$) $\iff \langle Tx | Ty \rangle = \langle x | y \rangle$ for all $x, y \in H \iff T^*T = 1$;
- (d) $U \in \mathscr{B}(H)$ is a bijective isometry $\iff U$ is a unitary element of $\mathscr{B}(H)$ (i.e., $U^*U = UU^* = 1$);
- (e) give a geometric interpretation of the property $TT^* = 1$ for $T \in \mathscr{B}(H)$.

Definition 7.1. Let A be a C^{*}-algebra. An element $p \in A$ is a projection if $p = p^* = p^2$ (cf. Exercise 7.12 (b)).

7.13. Let A be a C^* -algebra, and let $u \in A$.

(a) Show that u^*u is a projection iff $uu^*u = u$. An element with the above property is called a *partial isometry*.

(b) Let H be a Hilbert space. Show that $u \in \mathscr{B}(H)$ is a partial isometry iff the restriction of u to $(\text{Ker } u)^{\perp}$ is an isometry.