The group Banach algebras $L^1(G)$ and M(G). Approximate identities (EXERCISES FOR LECTURES 8–9)

Convention. Throughout, all locally compact groups are assumed to be second countable.

5.1. Show that (a) $C^n[a,b]$ $(n \ge 1)$ and (b) $\mathscr{A}(\mathbb{D})$ are Banach *-algebras, but are not C^* -algebras. (Recall that the involution on $C^n[a,b]$ is given by $f^*(t) = \overline{f(t)}$, while the involution on $\mathscr{A}(\overline{\mathbb{D}})$ is given by $f^*(z) = \overline{f(\overline{z})}$.)

5.2. Let G be a locally compact group. As was shown in the lectures, $L^1(G)$ is a Banach algebra under convolution.

(a) Show that $L^1(G)$ is a Banach *-algebra w.r.t. the involution $f^*(x) = \overline{f(x^{-1})}\Delta(x^{-1})$ $(f \in L^1(G), x \in G)$.

(b) Show that $L^1(G)$ (equipped with the standard L^1 -norm and with the involution defined in (a)) is not a C^* -algebra unless $G = \{e\}$.

(c) Show that $L^1(G)$ is unital if and only if G is discrete.

5.3. Let G be a locally compact group.

(a) Prove the associativity of the convolution on M(G).

(b) Show that M(G) is a Banach *-algebra w.r.t. the involution $\langle \nu^*, f \rangle = \overline{\langle \nu, \overline{Sf} \rangle}$ ($\nu \in M(G)$, $f \in C_0(G)$).

(c) Show that, for each $\nu \in M(G)$ and each Borel set $B \subset G$, we have $\nu^*(B) = \overline{\nu(B^{-1})}$.

5.4. Let G be a locally compact group, and let μ be a left Haar measure on G. Given $f \in L^1(G)$, define $f \cdot \mu \in M(G)$ by $\langle f \cdot \mu, g \rangle = \langle \mu, fg \rangle$ $(g \in C_0(G))$.

(a) Show that for each Borel set $B \subset G$ we have $(f \cdot \mu)(B) = \int_B f d\mu$.

(b) Show that the map $i: L^1(G) \to M(G), f \mapsto f \cdot \mu$, is an isometric *-algebra homomorphism.

(c) Identify $L^1(G)$ with its canonical image in M(G) (see (b) above). Show that $L^1(G)$ is a closed 2-sided ideal of M(G), and that for each $f \in L^1(G)$, $\nu \in M(G)$, and for almost all $x \in G$ we have

$$(\nu * f)(x) = \int_G f(y^{-1}x) \, d\nu(y), \qquad (f * \nu)(x) = \int_G f(xy^{-1}) \Delta(y^{-1}) \, d\nu(y). \tag{1}$$

5.5. Given a locally compact group G and $x \in G$, let δ_x denote the Dirac measure on G concentrated at x. Show that, for each $\nu \in M(G)$ and each $x \in G$, we have

$$L_x\nu = \delta_x * \nu, \quad R_x\nu = \nu * \delta_{x^{-1}}, \quad \delta_x * \delta_y = \delta_{xy}.$$

In particular, δ_e is the identity of M(G).

5.6. Show that $L^1(G)$ is commutative $\iff M(G)$ is commutative $\iff G$ is commutative.

5.7. Let G be a locally compact group. Prove that

- (a) the map $\alpha \colon \mathbb{C}G \to M(G), x \in G \mapsto \delta_x \in M(G)$, is an injective algebra homomorphism;
- (b) α is onto iff G is finite;
- (c) α uniquely extends to an isometric homomorphism $\beta \colon \ell^1(G) \to M(G);$
- (d) β is onto iff G is discrete.

5.8. Let G be a nondiscrete locally compact group, and let μ be a left Haar measure on G. (a) Prove that there are Banach space direct sum decompositions

 $M(G) = M_d(G) \oplus M_c(G), \quad M_c(G) = M_a(G) \oplus M_{cs}(G),$

where

$$M_d(G) = \left\{ \nu \in M(G) : |\nu|(G \setminus S) = 0 \text{ for an at most countable } S \subset G \right\}$$

is the subspace of *discrete* measures,

$$M_{c}(G) = \{ \nu \in M(G) : \nu(\{x\}) = 0 \text{ for all } x \in G \}$$

is the subspace of *continuous* measures,

$$M_a(G) = \left\{ \nu \in M(G) : \nu \ll \mu \right\}$$

is the subspace of measures that are *absolutely continuous* w.r.t. μ , and

$$M_{cs}(G) = \{\nu \in M_c(G) : \nu \perp \mu\}$$

is the subspace of *continuous singular* measures.

(b) Show that $M_d(G)$ is a closed *-subalgebra of M(G) isomorphic to $\ell^1(G)$ via β (see Exercise 5.7), $M_c(G)$ is a closed two-sided *-ideal of M(G), and $M_a(G)$ is a closed two-sided *-ideal of M(G) isomorphic to $L^1(G)$ via i (see Exercise 5.4).

(*Hint to* (a): use the Lebesgue-Radon-Nikodym theorem.)

5.9. Let A be a normed algebra, and let (e_{α}) be a bounded approximate identity in A. Show that (a) if B is a normed algebra and $\varphi \colon A \to B$ is a continuous homomorphism such that $\overline{\varphi(A)} = B$, then $(\varphi(e_{\alpha}))$ is a bounded approximate identity in B;

(b) if A is a normed *-algebra, then $(e^*_{\alpha}e_{\alpha})$ is a bounded approximate identity in A.

5.10. Let X be a locally compact Hausdorff topological space.

- (a) Construct an approximate identity in $C_0(X)$.
- (b) Show that $C_0(X)$ has a sequential approximate identity if and only if X is σ -compact.

5.11. Let H be a Hilbert space.

- (a) Construct an approximate identity in $\mathscr{K}(H)$.
- (b) Show that $\mathscr{K}(H)$ has a sequential approximate identity if and only if H is separable.

5.12. Show that the Banach algebra ℓ^1 equipped with the pointwise multiplication does not have a bounded approximate identity.

5.13. Show that the Banach algebra $A = \{f \in C^1[0,1] : f(0) = 0\}$ does not have an approximate identity.

5.14. Let G be a locally compact group, and let (u_{α}) be a Dirac net in $L^{1}(G)$. Show that (u_{α}) converges to $\delta_{e} \in M(G)$ w.r.t. the weak^{*} topology on M(G).

5.15. Let A be a normed algebra with a bounded approximate identity. Suppose that (e_n) is a sequential approximate identity in A.

- (a) Is (e_n) necessarily bounded?
- (b) Is (e_n) necessarily bounded under the assumption that A is a Banach algebra?