Locally compact spaces and groups. The Haar measure

(EXERCISES FOR LECTURES 4–7)

- **4.1.** Let $(X_i)_{i\in I}$ be a family of topological spaces. Show that $\prod_{i\in I} X_i$ is locally compact if and only if each X_i is locally compact and only finitely many of the X_i 's are noncompact.
- **4.2.** Show that the counting measure on a nondiscrete Hausdorff topological space is not a Radon measure.
- **4.3.** Let X be a locally compact, σ -compact Hausdorff topological space. Show that each outer Radon measure on X is inner regular on all Borel sets.
- **4.4.** Let X be a locally compact, second countable Hausdorff topological space. Show that each Borel measure on X that is finite on compact sets is a Radon measure.
- **4.5.** Let X be a locally compact topological space, and let $C_c(X)$ denote the space of all continuous compactly supported functions on X. Given a compact set $K \subset X$, let $C_K(X) = \{f \in C_c(X) : \text{supp } f \subset K\}$. We endow $C_K(X)$ with the topology generated by the sup-norm $||f|| = \sup_{x \in K} |f(x)|$. Show that every positive linear functional $I: C_c(X) \to \mathbb{C}$ is continuous on $C_K(X)$, for each compact set $K \subset X$. (Equivalently, this means that I is continuous w.r.t. the inductive limit topology on $C_c(X) = \varinjlim_K C_K(X)$.) Of course, you are not allowed to use the Riesz-Markov-Kakutani theorem, otherwise the exercise would be trivial...
- **4.6.** Give an example of a locally compact group G and a left uniformly continuous function $f: G \to \mathbb{C}$ that is not right uniformly continuous.
- **4.7.** Find explicitly the left and the right Haar measures on $GL_n(\mathbb{R})$. (You can find an answer in many books, and you can easily check that it works, but I recommend you to deduce the formula for the Haar measure by using the method that was discussed at the lecture in the context of arbitrary Lie groups.)
- **4.8** (the "ax + b" group). Let G be the group of all matrices of the form $\binom{a \ b}{0 \ 1}$, where $a \in \mathbb{R}^{\times}$ and $b \in \mathbb{R}$ (this group is isomorphic to the group of all affine transformations $x \mapsto ax + b$ of \mathbb{R}). Find explicitly the left and the right Haar measures on G. (You can find an answer in many books, and you can easily check that it works, but I recommend you to deduce the formula for the Haar measure by using the method that was discussed at the lecture in the context of arbitrary Lie groups.)
- **4.9** (the Heisenberg group). Let G be the group of all matrices of the form $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$, where $a, b, c \in \mathbb{R}$. Find explicitly the left and the right Haar measures on G. (You can find an answer in many books, and you can easily check that it works, but I recommend you to deduce the formula for the Haar measure by using the method that was discussed at the lecture in the context of arbitrary Lie groups.)
- **4.10.** Let G be a locally compact group, and let $\chi: G \to \mathbb{R}_{>0}$ be a continuous homomorphism. Show that there exists a unique (up to a positive constant) positive Radon measure on G such that for each Borel set $B \subset G$ we have $\mu(xB) = \chi(x)\mu(B)$. (*Hint:* express μ in terms of a Haar measure on G.)
- **4.11.** Let $p \in \mathbb{N}$ be a prime number. Show that the following definitions of the field \mathbb{Q}_p of p-adic numbers and of the ring \mathbb{Z}_p of p-adic integers are equivalent:
 - (i) $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n \mathbb{Z}$, \mathbb{Q}_p is the field of fractions of \mathbb{Z}_p .

- (ii) \mathbb{Q}_p is the completion of \mathbb{Q} w.r.t. the p-adic norm $|\cdot|_p$ given by $|x|_p = p^{-r}$, where $x = p^r a/b \in$
- $\mathbb{Q} \setminus \{0\}, \ a \in \mathbb{Z}, \ b \in \mathbb{N}, \ p \nmid a, p \nmid b; \ \mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leqslant 1\}.$ (iii) \mathbb{Q}_p consists of all formal expressions of the form $x = \sum_{k=n}^{\infty} a_k p^k$, where $n \in \mathbb{Z}$ and $a_k \in \mathbb{Z}$ $\{0,1,\ldots,p-1\}; \mathbb{Z}_p = \{x \in \mathbb{Q}_p : a_k = 0 \ \forall k < 0\}.$ (Define algebraic operations on such formal expressions! What is $|x|_p$ if x has the above form?)

Show that the projective limit topology on \mathbb{Z}_p defined in (i) agrees with the norm topology defined in (ii). Prove that \mathbb{Z}_p is compact and that \mathbb{Q}_p is locally compact.

- **4.12.** Let μ denote the Haar measure on \mathbb{Q}_p normalized in such a way that $\mu(\mathbb{Z}_p) = 1$. Show that
- (a) $\mu(\mathbb{B}_{p^k}(x)) = p^k$, where $\mathbb{B}_{p^k}(x)$ is the closed ball of radius p^k $(k \in \mathbb{Z})$ centered at $x \in \mathbb{Q}_p$.
- (b) For each Borel set $B \subset \mathbb{Q}_p$ we have

$$\mu(B) = \inf \left\{ \sum_{i=1}^{\infty} p^{k_i} : B \subset \bigcup_{i=1}^{\infty} \mathbb{B}_{p^{k_i}}(x_i) \right\}.$$

- **4.13.** Let $G = (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ be the product of countably many copies of $\mathbb{Z}/2\mathbb{Z}$, and let μ denote the normalized Haar measure on G.
- (a) Calculate $\mu(U)$ for a basic open set $U = \prod_{i=1}^{\infty} U_i$, where $U_i = \mathbb{Z}/2\mathbb{Z}$ for all but finitely many i.
- (b) Define $f: G \to [0,1]$ by $f(a_1, a_2, \ldots) = \sum_{i=1}^{n-1} a_i 2^{-i}$. Show that f is onto and that $f^{-1}(x)$ is one point unless x is a dyadic rational, in which case $f^{-1}(x)$ consists of two points. Prove that the image of μ under f is the Lebesgue measure on [0, 1].
- (c) Define $h: G \to [0,1]$ by $h(a_1, a_2, \ldots) = \sum_i 2a_i 3^{-i}$. Show that h is a homeomorphism of Gonto the Cantor set. Prove that the image of μ under h is the Lebesgue-Stieltjes measure on [0, 1] associated to the Cantor function.
- **4.14.** Let G be a locally compact group, and let μ be a positive Radon measure on G.
- (a) Given a continuous function $f: G \to \mathbb{R}_{\geq 0}$, define a Radon measure $f \cdot \mu$ on G by $\langle f \cdot \mu, g \rangle = \langle \mu, fg \rangle$ $(g \in C_c(G))$. Show that for each $x \in G$ we have $L_x(f \cdot \mu) = L_x f \cdot L_x \mu$, where $L_x f$ and $L_x \mu$ are the left translates of f and μ , respectively. Prove a similar formula for the right translates.
- (b) Define a Radon measure $S\mu$ on G by $\langle S\mu, g \rangle = \langle \mu, Sg \rangle$ $(g \in C_c(G))$, where $(Sg)(x) = g(x^{-1})$ $(x \in G)$. Show that for each continuous function $f: G \to \mathbb{R}_{\geq 0}$ we have $S(f \cdot \mu) = Sf \cdot S\mu$.
- **4.15.** Let G be a real Lie group. Show that the modular character Δ of G is given by $\Delta(x) =$ $\det \operatorname{Ad}_{x^{-1}}$, where Ad is the adjoint representation of G.
- **4.16.** Calculate the modular character of
- (a) the "ax + b" group (see Exercise 5.8);
- (b) the group of upper triangular 2×2 -matrices.
- **4.17.** Show that $SL_2(\mathbb{R})$ is unimodular. (*Hint:* you do not need an explicit formula for the Haar measure on $SL_2(\mathbb{R})$.)