
15.03.2024 C∗-algebras & compact quantum groups Exercise sheet 2

C∗-algebras. Functional calculus. Positivity
(exercises for Lectures 4–7)

2.1. Show that Cn[0, 1] is a Banach ∗-algebra under the involution f ∗(t) = f(t) (t ∈ [0, 1]), but is
not a C∗-algebra unless n = 0.

2.2. Show that A (D̄) is a Banach ∗-algebra under the involution f ∗(z) = f(z̄) (z ∈ D̄), but is not a
C∗-algebra.

2.3. Let G be a discrete group. Show that ℓ1(G) is a Banach ∗-algebra under the involution f ∗(x) =
f(x−1) (x ∈ G), but is not a C∗-algebra unless G = {e}.

2.4. (a) Does there exist a norm and an involution on C1[a, b] making it into a C∗-algebra?
(b) Does there exist a norm and an involution on A (D̄) making it into a C∗-algebra?
(c) Does there exist a norm and an involution on ℓ1(Z) making it into a C∗-algebra?

Remark. In 2.4 (a,b,c), we do not assume that the new norm is equivalent to the original norm.

2.5. Let X be a locally compact Hausdorff topological space, and let X+ denote the one-point
compactification of X. For each f ∈ C0(X), define f+ : X+ → C by f+(x) = f(x) for x ∈ X and
f+(∞) = 0. Prove that f+ is continuous, and that the map C0(X)+ → C(X+), f +λ1+ 7→ f++λ, is
an isometric ∗-isomorphism. (Here we assume that C0(X)+ is equipped with the canonical C∗-norm
extending the supremum norm on C0(X).)

2.6. Let A and B be C∗-algebras. Show that if B is commutative, then each homomorphism from
A to B is a ∗-homomorphism. Does the above result hold without the commutativity assumption?

2.7. Let G be a discrete group. The left regular representation λ : ℓ1(G) → B(ℓ2(G)) is given by
λ(f)g = f ∗g (f ∈ ℓ1(G), g ∈ ℓ2(G)). Prove that λ is well defined (that is, f ∗g is defined everywhere
on G and belongs to ℓ2(G), that λ(f) is a bounded linear operator, and that λ is a ∗-homomorphism).
Prove that λ is faithful.

Definition 2.1. The reduced group C∗-algebra of G is the C∗-subalgebra C∗
r (G) = Imλ ⊂ B(ℓ2(G)).

2.8. Let G be a discrete abelian group. Construct an isometric ∗-isomorphism C∗
r (G) ∼= C(Ĝ).

2.9. Let A = C1[0, 1]. Is it true that (a) for each unitary u ∈ A we have σ(u) ⊂ T? (b) for
each selfadjoint a ∈ A we have σ(a) ⊂ R? (c) for each a ∈ A we have ‖a‖ = r(a)?

2.10. Let A = A (D̄). Is it true that (a) for each unitary u ∈ A we have σ(u) ⊂ T? (b) for
each selfadjoint a ∈ A we have σ(a) ⊂ R? (c) for each a ∈ A we have ‖a‖ = r(a)?

2.11. Let A = ℓ1(Z). Is it true that (a) for each unitary u ∈ A we have σ(u) ⊂ T? (b) for
each selfadjoint a ∈ A we have σ(a) ⊂ R? (c) for each a ∈ A we have ‖a‖ = r(a)?

2.12. Let A be a unital C∗-algebra, and let u ∈ A be a unitary element.
(a) Prove that if σ(u) 6= T, then there exists a selfadjoint element a ∈ A such that u = exp(ia).
(b) Does (a) hold if σ(u) = T?

2.13. Let φ : A → B be a surjective ∗-homomorphism of C∗-algebras. Is it true that
(a) for each selfadjoint b ∈ B there exists a selfadjoint a ∈ A with φ(a) = b?
(b) for each unitary b ∈ B there exists a unitary a ∈ A with φ(a) = b?
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2.14. Construct a unital Banach ∗-algebra and a normal element a ∈ A which does not have a
continuous functional calculus (i.e., there is no continuous unital ∗-homomorphism γ : C(σ(a)) → A
satisfying γ(t) = a, where t is the tautological embedding of σ(a) into C).
2.15. Let X be a compact Hausdorff topological space. Show that for each a ∈ C(X) and each
f ∈ C(σ(a)) we have f(a) = f ◦ a.
2.16. Let α ∈ ℓ∞, and let Mα denote the respective diagonal operator on ℓ2. Show that for each
f ∈ C(σ(Mα)) we have f(Mα) = Mf◦α.

2.17. Let (X,µ) be a σ-finite measure space, let φ : X → C be an essentially bounded measurable
function, and let Mφ denote the respective multiplication operator on L2(X,µ). Show that for each
f ∈ C(σ(Mφ)) we have f(Mφ) = Mf◦φ (in particular, give a precise meaning to the expression f ◦φ).
2.18. Let A and B be unital C∗-algebras, and let φ : A → B be a unital ∗-homomorphism. Show
that for each normal a ∈ A and each f ∈ C(σ(a)) we have φ(f(a)) = f(φ(a)).

2.19. Let A be a C∗-algebra. Given a normal element a ∈ A and f ∈ C(σA+(a)), let f(a) denote
the result of applying to f the functional calculus for a in A+. Show that f(a) ∈ A iff f(0) = 0.

2.20. Let H be a Hilbert space. Show that
(a) T ∈ B(H) is selfadjoint ⇐⇒ 〈Tx | x〉 ∈ R for all x ∈ H;
(b) T ∈ B(H) is positive (as an element of B(H)) ⇐⇒ 〈Tx | x〉 ⩾ 0 for all x ∈ H;
(c) P ∈ B(H) is an orthogonal projection onto a closed subspace of H ⇐⇒ P = P ∗ = P 2;
(d) T ∈ B(H) is an isometry (i.e., ‖Tx‖ = ‖x‖ for all x ∈ H) ⇐⇒ 〈Tx |Ty〉 = 〈x | y〉 for all
x, y ∈ H ⇐⇒ T ∗T = 1;
(e) U ∈ B(H) is a bijective isometry ⇐⇒ U is a unitary element of B(H) (i.e., U∗U = UU∗ = 1);
(f) give a geometric interpretation of the property TT ∗ = 1 for T ∈ B(H).

2.21. Show that each element of a unital C∗-algebra is a linear combination of four unitaries.
Hint:

Definition 2.2. Let A be a C∗-algebra. An element p ∈ A is a projection if p = p∗ = p2 (cf.
Exercise 2.20 (c)).

2.22. Let A be a C∗-algebra, and let u ∈ A.
(a) Show that u∗u is a projection iff uu∗u = u. An element with the above property is called a
partial isometry.
(b) Let H be a Hilbert space. Show that u ∈ B(H) is a partial isometry iff the restriction of u to
(Ker u)⊥ is an isometry.

2.23 (polar decomposition). Let H be a Hilbert space. Prove that for each a ∈ B(H) there exists a
unique partial isometry u ∈ B(H) such that a = u|a| and Ker u = (Im |a|)⊥.
2.24 (polar decomposition for invertibles). Let A be a unital C∗-algebra.
(a) Show that for each invertible a ∈ A there exists a unique unitary u ∈ A such that a = u|a|.
(b) Does (a) hold if a is not invertible and A = C[a, b]?
(c) Does (a) hold if a is not invertible and A = B(H)?

2.25. Let A be a C∗-algebra, and let a, b ∈ A, 0 ⩽ a ⩽ b.
(a) Prove that a1/2 ⩽ b1/2.
(b) Give an example showing that, in general, a2 6⩽ b2.
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